BARDAGES À VENTELLES FILANTES

We inspire at www.duco.eu

HOME OF OXYGEN

DUCO Ventilation & Sun Control apporte de l'oxygène dans n'importe quel bâtiment de manière saine. Grâce à une large gamme de systèmes de ventilation naturelle et mécanique, en combinaison ou non avec une protection solaire extérieure, DUCO offre la garantie ultime pour un climat intérieur sain et confortable. La santé de l'utilisateur est également une

priorité chez DUCO. Une combinaison astucieuse de ventilation de base, d'extraction mécanique, de ventilation intensive et de protection solaire assure une qualité de l'air optimale. DUCO propose des solutions novatrices pour les habitations, les bureaux, les écoles et les institutions de soins, pour un confort accru.

DUCO, Home of Oxygen

GÉNÉRALITÉS	4
PRODUITS	6
DUCOWALL SOLID DucoWall Solid W 30Z	8
DUCOWALL SCREENING	
DucoWall Screening 35	12
DucoWall Screening 70	
DUCOWALL CLASSIC	
DucoWall Classic W 20Z	
DucoWall Classic W 20V	
DucoWall Classic W 35V	
DucoWall Classic W 50Z/30°	
DucoWall Classic W 50Z	
DucoWall Classic W 50/75Z	
DucoWall Classic W 70V	
DucoWall Classic W 45HP	
DucoWall Classic W 50HP	
DucoWall Classic W 130HP	
DucoWall Classic W 80HP	
DucoWall Classic W 60C	25
DUCOWALL ACOUSTIC	
DucoWall Acoustic W 75Z & W 75L	
DucoWall Acoustic W 150 & W 300	29
PORTES À VENTELLES DUCODOOR	30
DucoDoor Wall	
DucoDoor Louvre	
DucoDoor Grille	33
ÉDICULES DE TOITURE	
Duco Roof Turret Solid 30Z	34
RÉFÉRENCES	36
DIVERS	38
Service	38
Présentation des profils porteurs	39
Tableau des valeurs techniques	40

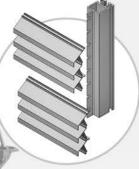
CLAUSE DE NON-RESPONSABILITÉ

Les illustrations de ce catalogue peuvent différer du produit réel. Textes sous réserve d'erreur d'impression et/ou de modification. DUCO se réserve le droit de modifier ces données à tout moment. Les données légales mentionnées sont valables au 19.06.2023 et sont susceptibles de modifications par le législateur.

UNE SOLUTION POUR CHAQUE SITUATION

→ Montage rapide

Dans les systèmes DucoWall Classic et Acoustic, les porte-lames en matière plastique sont préalablement fixés au profil porteur grâce au système « glisser-cliquer » breveté de DUCO. Les lames peuvent ensuite y être simplement encliquetées.



1. Tourne

2. Clic

3. Clic

Grâce au système « glissercliquer » breveté de DUCO destiné aux DucoWall Solid et Screening, les lames se fixent directement sur le profil porteur, ce qui garantit un montage très rapide.

Lames Solid 30Z triples

→ Finition

Chaque type de bardage à ventelles filantes est disponible dans toutes les couleurs : F1, chaque couleur RAL, peinture structurée, couleur / peinture spéciale... La mise en peinture de chaque type de bardage à ventelles filantes répond aux normes de qualité SeaSide. Chaque type de bardage à ventelles filantes repris dans cette brochure répond en outre aux spécifications de qualité Qualicoat ou

Qualanod.

→ À l'épreuve du vandalisme et antieffraction

Les lames Solid sont très robustes et à l'épreuve du vandalisme.

Tous les types de bardage à ventelles filantes (DucoWall Solid, Classic*, Acoustic et Screening) et les portes à ventelles DucoDoor Louvre et Grille peuvent, en option, être réalisées en version anti-effraction jusqu'à la classe de résistance 2 selon la norme européenne.

* Sauf DucoWall Classic W 60C/2, W 60C/3 et DucoWall Acoustic W 300

→ Moustiquaire et dispositif antiparasites

Dans les lames à petite perforation (P1) de DucoWall Solid, les **lames perforées** font office de moustiquaire. Dans tous les autres types (Solid P2, Classic, Acoustic et Screening), il est possible de choisir en option une **moustiquaire inox** de 2,3 x 2,3 mm ou de 6 x 6 mm.

P2

Moustiquaire inox

DucoWall Solid W 30Z P1

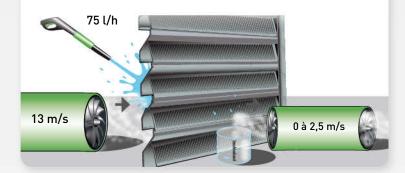
→ Capacité de ventilation

Chaque bardage à ventelles filantes est testé de manière approfondie et optimisé par le département R&D de DUCO.

Les **lames HP « High Performance »** de la gamme DucoWall Classic assurent une excellente ventilation grâce à leur faible résistance.

Airflow performance class	Ce or Cd
1	> 0,4
2	0,3 - 0,399
3	0,2 - 0,299
4	≤ 0,199

DucoWall Classic W 130HP


→ Étanchéité à l'eau

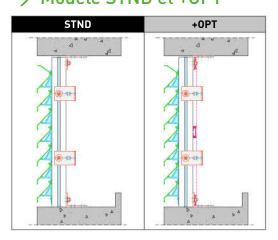
Tous les bardages à ventelles filantes DucoWall sont testés par **BSRIA** selon des tests d'étanchéité à l'eau développés en collaboration avec HEVAC. Les tests

simulent une pénétration d'eau de pluie de 75 litres par heure avec une vitesse du vent de 13 mètres par seconde. Une classe d'étanchéité est attribuée au bardage à ventelles filantes en fonction de la vitesse de l'air dans le bardage et du % d'étanchéité à l'eau.

Classe A	100 - 99 %
Classe B	98,5 - 95 %
Classe C	94,9 - 80 %
Classe D	< 80 %

EN13030

Les bardages à ventelles filantes DucoWall Classic avec **lames en V** procurent une protection contre l'introduction d'objets.


→ Atténuation acoustique

Les lames DucoWall Acoustic

sont recouvertes, sur leur face intérieure, de laine minérale ininflammable et constituent une solution idéale pour les applications dans les environnements à grande nuisance sonore.

→ Modèle STND et +OPT

Les valeurs techniques de nos grilles ont été testées de deux manières :

STND = 'Standard'

Il s'agit de la version standard.

+0PT = '+0ptions'

Il s'agit d'un modèle optionnel où le bardage à ventelles filantes a été testé avec moustiquaire.

Le modèle **+OPT** apportera souvent de meilleurs résultats en termes de résistance à l'eau. Voir chaque page produit pour toutes les valeurs par type de grille.

APERÇU DU PRODUIT

Plus la portée est longue, plus le taux de passage d'air est élevé. Version STND et +OPT:

Version STND et +OPT voir page 5

Portée des lames maximale

entre deux profils porteurs à 800 Pa et coefficient de pression : 1,2

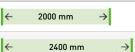
DUCOWALL SOLID

De solides lames en aluminium superposables forment un bardage à l'épreuve du vandalisme ne nécessitant qu'une construction porteuse minimale. Montage très rapide grâce au système « Direct Clip » breveté de DUCO.

O DucoWall Solid W 30Z

voir p. 8

DUCOWALL SCREENING


Bardage à ventelles filantes en aluminium convenant particulièrement aux projets pour lesquels le bardage sert en premier lieu de **revêtement de façade (pare-vue)**. Ces systèmes sont garants d'une **installation très rapide**.

DucoWall Screening 35

DucoWall Screening 70

voir p. 12

voir p. 13

DUCOWALL CLASSIC

Bardage à ventelles filantes avec **porte-lames**. Montage rapide grâce au système « glisser-cliquer » de DUCO. Les porte-lames peuvent être disposés séparément sur le profil porteur, permettant ainsi une **finition parfaite**.

Capacité de ventilation

= à l'aspiration = à l'extraction

Plus la portée est longue, plus le taux de passage d'air est élevé.

Version STND et +0PT : voir page 5

Portée des lames maximale

entre deux profils porteurs à 800 Pa et coefficient de pression : 1,2

DUCOWALL ACOUSTIC

Bardage à ventelles filantes en aluminium dont la face intérieure des lames est recouverte de laine minérale ininflammable **insonorisante**. Montage rapide grâce au système « glisser-cliquer » breveté de DUCO.

OucoWall Acoustic W 75Z

+0PT

← 1700 mm →

← 1650 mm →

voir p. 28

OucoWall Acoustic W 75L

OucoWall Acoustic W 150

ก

\$TND +0PT \$TND +0PT

← 2150 mm →

voir p. 28

DucoWall Acoustic W 300

ก[†]

STND +OPT

← 2150 mm →

oir p. 29

PORTES À VENTELLES DUCODOOR

Portes à ventelles à ventilation ou portes à persiennes, intégrées ou non dans un bardage à ventelles filantes, au choix.

DucoDoor Wall

- Coo

2) 🖽

filantes sans exigences particulières

Porte à ventelles à ventilation ou porte à persiennes dans un bardage à ventelles filantes avec des exigences spécifiques en matière d'intrusions et / ou de courants d'air

voir p. 31

DucoDoor Grille

RC2

2) filar

Porte à ventelles à ventilation ou porte à persiennes autonome, avec ou sans exigences spécifiques contre les intrusions et / ou les courants d'air

Portes à ventelles dans un système de bardage à ventelles

voir p. 32

voir p. 33

ÉDICULES DE TOITURE

Kits et pièces pour la construction d'édicules de toiture avec des lames DucoWall.

Duco Roof Turret Solid 30Z

voir p. 34

Légende

À l'épreuve du vandalisme

Le bardage à ventelles filantes est à l'épreuve du vandalisme. Anti-effraction Le bardage à ventelles filantes est (en option) anti-effraction jusqu'à la classe 2. Protection contre

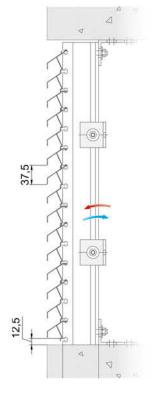
d'objets Le bardage à ventelles filantes est à l'épreuve de l'introduction d'objets. Étanche à l'eau Le bardage à ventelles filantes présente une étanchéité à l'eau

bonne à très bonne

High Performance Les lames sont optimalisées pour un taux de passage d'air Atténuation acoustique Peut être utilisé dans des projets à nuisance sonore légère à forte (+)

GRILLES DE VENTILATION

Les lames marquées **©** sont également disponibles comme grilles murales et de fenêtre (DucoGrille). Consultez notre brochure « Grilles de ventilation » pour plus d'informations.



DucoWall **Solid W 30Z**

Les lames DucoWall Solid 30Z offrent une grande capacité de ventilation avec des lames relativement petites. Les lames « superposables » forment un ensemble **extrêmement solide** et **à l'abri du vandalisme**. Ce robuste système de lames nécessite une structure portante minimale. Le système « Direct Clip » de DUCO permet un **montage très rapide**.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	40/21 (Double)	40/70 Double		
Pas de la lame	37,5 mm			
Profondeur de la lame	30 mm			
Profondeur d'installation	52 mm 102 mm			
Portée des lames maximale entre 2 profils porteurs	← 1970	0 mm →		

VALEURS DE VENTILATION

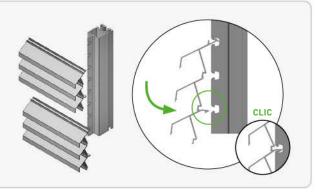
Competéniations		P	1	P2		
Caractéristique		STND +0PT		STND	+0PT	
Surface visuelle libre		60 %	n/a	86 %	86 %	
Surface physique li	urface physique libre		n/a	48 %	48 %	
Ce (une valeur plus élevée est meilleure)		0,216	n/a	0,234	0,232	
Cd (une valeur plus élevée	Cd (une valeur plus élevée est meilleure)		n/a	0,271	0,266	
FACTEUR K	ASPIRATION	21,43	n/a	18,26	18,58	
(une valeur plus basse est meilleure)	EXTRACTION	17,08	n/a	13,62	14,13	

Modèle STND et +OPT : voir page 5

	Classe					
Étanchéité à l'air	Р	1	Р	2		
· an	STND	STND +0PT		+0PT		
0 m/s	В	n/a	В	В		
0,5 m/s	В	n/a	С	В		
1 m/s	С	n/a	С	В		
1,5 m/s	С	n/a	С	В		
2 m/s	D	n/a	D	С		
2,5 m/s	D	n/a	D	D		

Perforation

Le modèle DucoWall Solid W 30Z peut être réalisé à l'aide de lames à **petites perforations (P1)**, à **grandes perforations (P2)** ou sans perforations en tant que **persienne (NP)**. Une combinaison au sein d'un même projet donne à la façade un aspect uniforme.

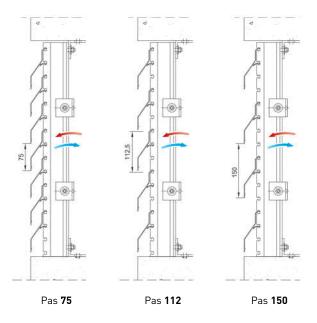

MOUSTIQUAIRE

Perforation	P1	P2	NP
Protection contre	Lames perforées pour la protection contre les insectes	Lames perforées pour la protection contre les oiseaux OPTIONS Moustiquaire inox 2,3 x 2,3 mm Moustiquaire inox 6 x 6 mm	100 % persienne

MONTAGE ULTRARAPIDE

DucoWall Solid W 30Z est constitué de **lames triples** qui se fixent l'une au-dessus de l'autre sur le profil porteur grâce au système « Direct Clip » de DUCO. Ceci forme un ensemble très solide et permet un montage ultrarapide.

La dernière rangée peut être finie par une lame simple.



DucoWall **Screening 35**

DucoWall Screening 35 est un système de bardage à ventelles filantes qui se clipse directement sur le profil de support. Il garantit donc une **installation simple et rapide**. Vous avez le choix entre trois pas de lame différents. Le bardage à ventelles filantes s'adapte ainsi aux souhaits et aux besoins de chaque projet. Ce système convient particulièrement aux projets pour lesquels le bardage à ventelles filantes sert en premier lieu de **pare-vue** (screening).

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	40/21 (Double)	40/70 Double		
Pas de la lame	75 mm - 112 mm - 150 mm			
Profondeur de la lame	43 mm			
Profondeur d'installation	57 mm 107 mm			
Portée des lames maximale entre 2 profils porteurs	← 2000	mm →		

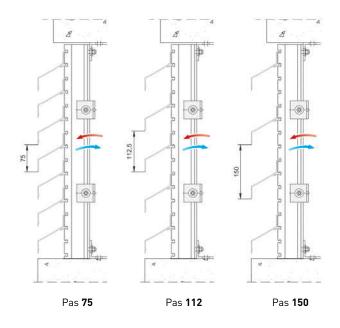
VALEURS DE VENTILATION

On the state of th		75		112		150	
Caractéristique	cteristique		+0PT	STND	+0PT	STND	+0PT
Surface visuelle l	ibre	52 %	52 %	68 %	68 %	76 %	76 %
Surface physique	libre	29 %	29 %	27 %	27 %	35 %	35 %
Ce (une valeur plus élevé	e est meilleure)	0,128	0,128	0,122	0,121	0,206	0,204
Cd (une valeur plus élevé	e est meilleure)	0,162	0,161	0,174	0,175	0,224	0,222
FACTEUR K	ASPIRATION	61,04	61,04	67,19	68,30	23,56	24,03
(une valeur plus basse est meilleure)	EXTRACTION	38,10	38,58	33,03	32,65	19,93	20,29

Modèle STND et +OPT : voir page 5

Moustiquaire : maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm

	Classe						
Étanchéi- té à l'air	75		112		150		
te a t an	STND	+OPT	STND	STND +OPT		+0PT	
0 m/s	Α	Α	В	В	С	С	
0,5 m/s	В	В	С	В	С	С	
1 m/s	В	В	С	С	D	D	
1,5 m/s	D	D	D	D	D	D	
2 m/s	D	D	D	D	D	D	
2,5 m/s	D	D	D	D	D	D	



 [→] Présentation des profils porteurs : voir page 39
 → Caractéristiques détaillées : voir page 40

DucoWall **Screening 70**

DucoWall Screening 70 est un système de bardage à ventelles filantes à très **grande portée** et **débit d'air élevé**. Les ventelles sont directement fixées sur le profil porteur-cliquer (Direct Clip). Cette caractéristique combinée au nombre limité de supports permet une **pose très rapide** du bardage à ventelles filantes. DucoWall Screening 70 est disponible avec différents pas de ventelles (75 / 112 / 150 mm).

DIMENSIONS ET PROFILS PORTEURS

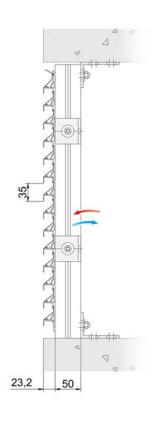
Type de profil porteur	40/21 (Double)	40/70 Double		
Pas de la lame	75 mm - 112 mm - 150 mm			
Profondeur de la lame	82 mm			
Profondeur d'installation	94,5 mm 145 mm			
Portée des lames maximale entre 2 profils porteurs	← 2400	mm →		

VALEURS DE VENTILATION

Caractéristique		75		112		150	
		STND	+OPT	STND	+OPT	STND	+0PT
Surface visuelle l	ibre	53 %	53 %	68 %	68 %	77 %	77 %
Surface physique	libre	37 %	37 %	59 %	59 %	55 %	55 %
Ce (une valeur plus élevé	e est meilleure)	0,182	0,181	0,212	0,212	0,270	0,264
Cd (une valeur plus élevé	e est meilleure)	0,200	0,197	0,270	0,266	0,313	0,308
FACTEUR K	ASPIRATION	30,19	30,52	22,25	22,25	13,72	14,35
(une valeur plus basse est meilleure)	EXTRACTION	25,00	25,77	13,72	14,13	10,21	10,54

Modèle STND et +OPT : voir page 5

Moustiquaire : maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm


4		Classe						
Étanchéi- té à l'air	75		75 117		12	15	50	
te a t an	STND	+OPT	STND +0PT		STND	+OPT		
0 m/s	В	Α	В	В	С	С		
0,5 m/s	С	В	С	В	D	С		
1 m/s	С	С	С	С	D	D		
1,5 m/s	С	С	С	С	D	D		
2 m/s	D	D	D	С	D	D		
2,5 m/s	D	D	D	D	D	D		

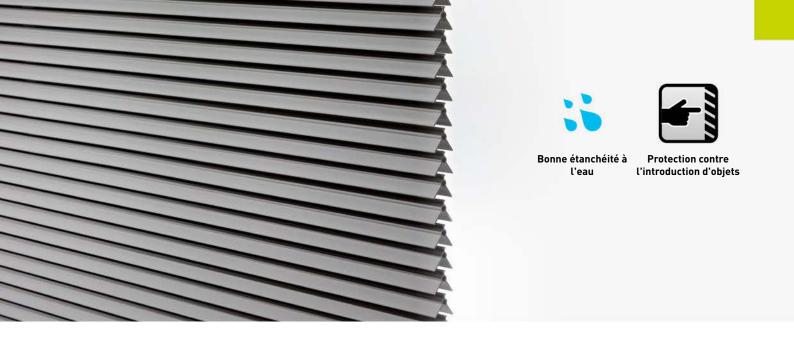
DucoWall Classic W 20Z

DucoWall Classic W 20Z est un bardage à ventelles filantes qui peut être fixé à une construction porteuse. Le système « glisser-cliquer » permet un montage rapide et simple. La **lame en « Z »** procure un style épuré.

DIMENSIONS ET PROFILS PORTEURS

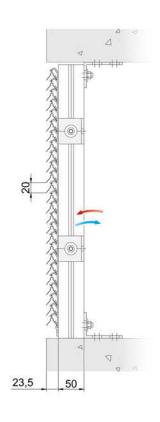
Type de profil porteur	50/12	21/50 Multi	50/50	50/125		
Pas de la lame	35 mm					
Profondeur de la lame	23 mm					
Profondeur d'installation	35 mm 73 mm 73 mm 148 m					
Portée des lames maximale entre 2 profils porteurs	← 1200 mm →					

VALEURS DE VENTILATION


Caractéristique		STND	+OPT
Surface visuelle libr	е	63 %	63 %
Surface physique lib	re	47 %	47 %
Ce (une valeur plus élevée e	st meilleure)	0,210	0,203
Cd (une valeur plus élevée e	st meilleure)	0,181	0,174
FACTEUR K	ASPIRATION	22,68	24,27
(une valeur plus basse est meilleure)	EXTRACTION	30,52	33,03

ÉTANCHÉITÉ À L'EAU 💦

Vitesse de l'air	Cla	sse
vitesse de t air	STND	+0PT
0 m/s	С	В
0,5 m/s	С	В
1 m/s	D	С
1,5 m/s	D	D
2 m/s	D	D
2,5 m/s	D	D


Modèle STND et +OPT : voir page 5

DucoWall Classic W 20V

DucoWall Classic W 20V est un bardage à ventelles filantes qui peut être fixé à une construction porteuse. Le système « glisser-cliquer » permet un montage rapide et simple. La **lame en « V »** unique assure une meilleure protection contre l'eau et rend le bardage à ventelles filantes impénétrable et pratiquement imperméable aux regards depuis l'extérieur.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	20 mm				
Profondeur de la lame	23 mm				
Profondeur d'installation	35 mm 73 mm 73 mm 148 mm				
Portée des lames maximale entre 2 profils porteurs		← 1850	mm \rightarrow		

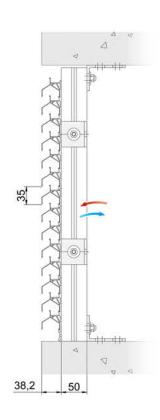
VALEURS DE VENTILATION

Caractéristique		STND	+OPT
Surface visuelle libr	e	95 %	95 %
Surface physique lib	re	37 %	37 %
Ce (une valeur plus élevée e	st meilleure)	0,155	0,149
Cd (une valeur plus élevée e	st meilleure)	0,155	0,149
FACTEUR K	ASPIRATION	41,62	45,04
(une valeur plus basse est meilleure)	EXTRACTION	41,62	45,04

ÉTANCHÉITÉ À L'EAU 💦

	The second second	
Vitesse de l'air	Cla	sse
vitesse de t air	STND	+0PT
0 m/s	Α	Α
0,5 m/s	В	Α
1 m/s	С	В
1,5 m/s	D	В
2 m/s	D	С
2,5 m/s	D	D

Modèle STND et +OPT : voir page 5


Bonne étanchéité à l'eau

Protection contre l'introduction d'objets

DucoWall Classic W 35V

DucoWall Classic W 35V est un bardage à ventelles filantes qui peut être fixé à une construction porteuse. Le système « glissercliquer » permet un montage rapide et simple. La **lame en « V »** unique assure une meilleure protection contre l'eau et rend le bardage à ventelles filantes impénétrable et pratiquement imperméable aux regards depuis l'extérieur.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	35 mm				
Profondeur de la lame	38 mm				
Profondeur d'installation	50 mm	88 mm	88 mm	163 mm	
Portée des lames maximale entre 2 profils porteurs	+	2650	mm	\rightarrow	

VALEURS DE VENTILATION

Caractéristique		STND	+OPT
Surface visuelle libr	e	59 %	59 %
Surface physique lib	re	35 %	35 %
Ce (une valeur plus élevée e	st meilleure)	0,118	0,116
Cd (une valeur plus élevée e	st meilleure)	0,124	0,123
FACTEUR K	ASPIRATION	71,82	74,32
(une valeur plus basse est meilleure)	EXTRACTION	65,04	66,10

ÉTANCHÉITÉ À L'EAU 💦

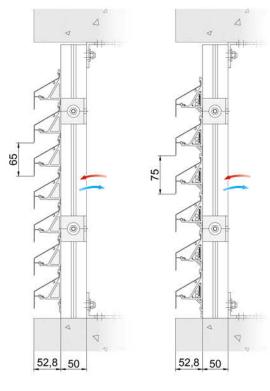
	W. 80.	
Vitesse de l'air	Cla	sse
vitesse de t dii	STND	+OPT
0 m/s	Α	Α
0,5 m/s	Α	Α
1 m/s	Α	Α
1,5 m/s	Α	Α
2 m/s	С	В
2,5 m/s	С	С

Modèle STND et +OPT : voir page 5

DucoWall Classic W 50Z/30°

DucoWall Classic W 50Z/30° est un bardage à ventelles filantes qui peut être fixé à une construction porteuse. Le système « glissercliquer » permet un montage rapide et simple. La lame en « Z » procure un style épuré. Le bardage à ventelles filantes est disponible avec un pas de 65 ou de 75 mm.

DIMENSIONS ET PROFILS PORTEURS


Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	65 ou 75 mm				
Profondeur de la lame	53 mm				
Profondeur d'installation	65 mm	103 mm	103 mm	178 mm	
Portée des lames maximale entre 2 profils porteurs	 ←	2050	mm	\rightarrow	

VALEURS DE VENTILATION

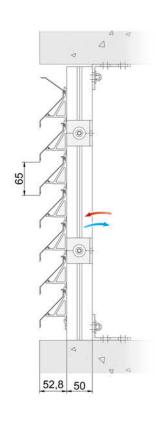
Caractéristique		6	65		75	
Caracteristique		STND	STND +0PT		+0PT	
Surface visuelle lib	re	41 %	41 %	49 %	49 %	
Surface physique li	ace physique libre		40 %	46 %	46 %	
Ce (une valeur plus élevée	est meilleure)	0,262	0,253	0,312	0,310	
Cd (une valeur plus élevée	est meilleure)	0,308	0,302	0,339	0,336	
FACTEUR K	ASPIRATION	14,57	15,62	10,27	10,41	
(une valeur plus basse est meilleure)	EXTRACTION	10,54	10,96	8,70	8,86	

Modèle STND et +OPT : voir page 5

Moustiquaire: maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm

Pas de lame 65

Pas de lame 75


Étanchéité à l'air	Classe				
	65		75		
tan	STND	+OPT	STND	+0PT	
0 m/s	В	Α	В	В	
0,5 m/s	С	В	С	В	
1 m/s	С	В	С	С	
1,5 m/s	С	С	С	С	
2 m/s	D	С	D	С	
2,5 m/s	D	С	D	D	

DucoWall Classic W 50Z

DucoWall Classic W 50Z est un bardage à ventelles filantes qui peut être fixé à une construction porteuse. Le système « glisser-cliquer » permet un montage rapide et simple. La **lame en « Z »** procure un style épuré.

DIMENSIONS ET PROFILS PORTEURS

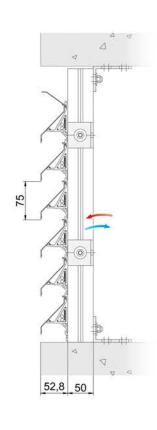
Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	65 mm				
Profondeur de la lame	53 mm				
Profondeur d'installation	65 mm	103 mm	103 mm	178 mm	
Portée des lames maximale entre 2 profils porteurs		← 1550	mm \rightarrow		

VALEURS DE VENTILATION

Caractéristique		STND	+OPT
Surface visuelle libr	е	75 %	75 %
Surface physique lib	re	52 %	52 %
Ce (une valeur plus élevée e	st meilleure)	0,205	0,207
Cd (une valeur plus élevée e	st meilleure)	0,278	0,266
FACTEUR K	ASPIRATION	23,80	23,34
(une valeur plus basse est meilleure)	EXTRACTION	12,94	14,13

ÉTANCHÉITÉ À L'EAU 💦

Vitesse de l'air	Cla	sse
vitesse de t air	STND	+0PT
0 m/s	В	Α
0,5 m/s	С	В
1 m/s	С	В
1,5 m/s	С	С
2 m/s	D	С
2,5 m/s	D	D


Modèle STND et +OPT : voir page 5

DucoWall Classic W 50/75Z

DucoWall Classic W 50/75Z est un bardage à ventelles filantes qui peut être fixé à une construction porteuse. Le système « glisser-cliquer » permet un montage rapide et simple. La **lame en « Z »** procure un style épuré.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	75 mm				
Profondeur de la lame	53 mm				
Profondeur d'installation	65 mm 103 mm 103 mm 178 mr				
Portée des lames maximale entre 2 profils porteurs		← 1550	mm →		

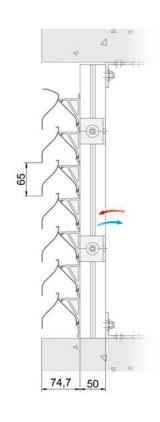
VALEURS DE VENTILATION

Caractéristique		STND	+OPT
Surface visuelle libr	е	80 %	80 %
Surface physique lib	re	54 %	54 %
Ce (une valeur plus élevée e	st meilleure)	0,219	0,219
Cd (une valeur plus élevée e	st meilleure)	0,297	0,288
FACTEUR K	ASPIRATION	20,85	20,85
(une valeur plus basse est meilleure)	EXTRACTION	11,34	12,06

ÉTANCHÉITÉ À L'EAU 🔧

Vitesse de l'air	Classe		
vitesse de t air	STND	+0PT	
0 m/s	В	Α	
0,5 m/s	С	В	
1 m/s	С	В	
1,5 m/s	D	С	
2 m/s	D	С	
2,5 m/s	D	D	

Modèle STND et +OPT : voir page 5


Bonne étanchéité à l'eau

Protection contre l'introduction d'objets

DucoWall Classic W 70V

DucoWall Classic W 70V est un bardage à ventelles filantes qui peut être fixé à une construction existante. Le système « glissercliquer » permet un montage rapide et simple. La **lame en « V »** unique assure une meilleure protection contre l'eau et rend le bardage à ventelles filantes impénétrable et pratiquement imperméable aux regards depuis l'extérieur.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	50/12	21/50 Multi	50/50	50/125
Pas de la lame	65 mm			
Profondeur de la lame	75 mm			
Profondeur d'installation	87 mm	125 mm	125 mm	200 mm
Portée des lames maximale entre 2 profils porteurs	ŀ	← 2150	mm -	>

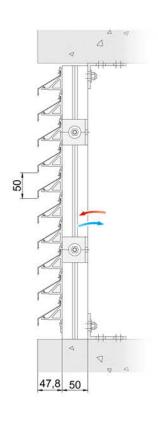
VALEURS DE VENTILATION


Caractéristique		STND	+OPT
Surface visuelle libr	е	65 %	65 %
Surface physique lib	re	44 %	44 %
Ce (une valeur plus élevée e	st meilleure)	0,117	0,111
Cd (une valeur plus élevée e	st meilleure)	0,109	0,103
FACTEUR K	ASPIRATION	73,05	81,16
(une valeur plus basse est meilleure)	EXTRACTION	84,17	94,26

ÉTANCHÉITÉ À L'EAU 💦

Vitesse de l'air	Classe		
vitesse de t air	STND	+0PT	
0 m/s	В	Α	
0,5 m/s	В	В	
1 m/s	В	В	
1,5 m/s	С	С	
2 m/s	D	D	
2,5 m/s	D	D	

Modèle STND et +OPT : voir page 5



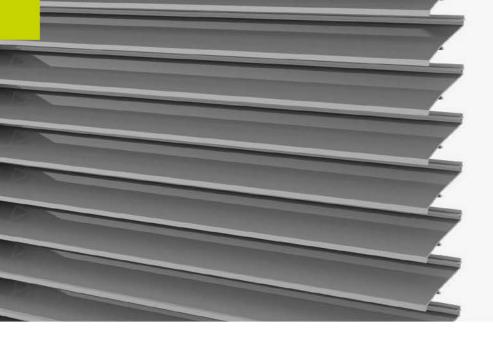
DucoWall Classic W 45HP

Le modèle DucoWall Classic W 45HP allie un **très bon taux de passage d'air** à une **lame en « Z »** qui lui confère un style épuré. Le système DucoWall Classic W 45HP peut donc être utilisé pour assurer une ventilation intensive dans les projets présentant des exigences esthétiques spécifiques.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	50 mm				
Profondeur de la lame	48 mm				
Profondeur d'installation	60 mm	98 mm	98 mm	173 mm	
Portée des lames maximale entre 2 profils porteurs		← 1330	mm →		

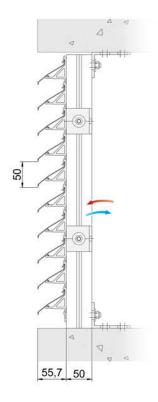
VALEURS DE VENTILATION


Caractéristique		STND	+0PT
Surface visuelle libr	е	70 %	70 %
Surface physique lib	re	60 %	60 %
Ce (une valeur plus élevée e	st meilleure)	0,295	0,295
Cd (une valeur plus élevée e	st meilleure)	0,385	0,369
FACTEUR K	ASPIRATION	11,49	11,49
(une valeur plus basse est meilleure)	EXTRACTION	6,75	7,34

ÉTANCHÉITÉ À L'EAU 🟅

Vitages de l'air	Classe		
Vitesse de l'air	STND	+0PT	
0 m/s	С	В	
0,5 m/s	С	В	
1 m/s	С	С	
1,5 m/s	С	С	
2 m/s	D	С	
2,5 m/s	D	С	

Modèle STND et +OPT : voir page 5



DucoWall Classic W 50HP

Le modèle DucoWall Classic W 50HP a été spécialement conçu pour une **ventilation intensive**. La lame « High Performance » spéciale à faible facteur de résistance assure un **très bon taux de passage d'air**. DucoWall Classic W 50HP est un bardage à ventelles filantes qui peut être fixé à une construction existante. Le système « glisser-cliquer » permet un montage rapide et simple.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur	50/12	21/50 Multi	50/50	50/125		
Pas de la lame	50 mm					
Profondeur de la lame	56 mm					
Profondeur d'installation	68 mm	106 mm	106 mm	181 mm		
Portée des lames maximale entre 2 profils porteurs	← 1100 mm →					

VALEURS DE VENTILATION

Caractéristique		STND	+0PT
Surface visuelle libre		88 %	88 %
Surface physique libre		68 %	68 %
Ce (une valeur plus élevée est meilleure)		0,358	0,352
Cd (une valeur plus élevée est meilleure)		0,439	0,415
FACTEUR K	ASPIRATION	7,80	8,07
(une valeur plus basse est meilleure)	EXTRACTION	5,19	5,81

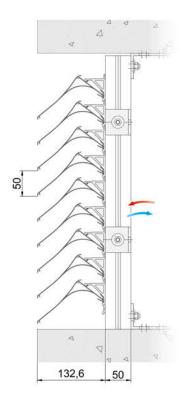
ÉTANCHÉITÉ À L'EAU 🔧

Vitesse de l'air	Classe		
vitesse de t air	STND	+0PT	
0 m/s	С	В	
0,5 m/s	С	В	
1 m/s	С	В	
1,5 m/s	D	С	
2 m/s	D	С	
2,5 m/s	D	С	

Modèle STND et +OPT : voir page 5

Moustiquaire : maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm

→ Présentation des profils porteurs : voir page 39
 → Caractéristiques détaillées : voir page 40



Étanchéité à l'eau exceptionnelle

DucoWall Classic W 130HP

Le modèle DucoWall Classic W 130HP a été spécialement conçu pour une **ventilation intensive**. La forme unique de ces lames hautes performances à faible facteur de résistance permet d'allier un très bon taux de passage d'air (débits élevés) à une étanchéité à l'eau exceptionnelle (classe A). DucoWall Classic W 130HP est un bardage à ventelles filantes qui peut être fixé à une construction existante. Le système « glisser-cliquer » permet un montage rapide et simple.

DIMENSIONS ET PROFILS PORTEURS

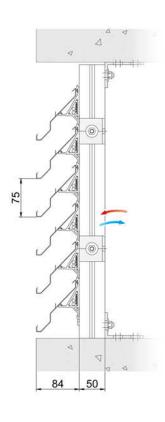
Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	50 mm				
Profondeur de la lame	133 mm				
Profondeur d'installation	145 mm	183 mm	183 mm	258 mm	
Portée des lames maximale entre 2 profils porteurs	+	- 2300	mm	\rightarrow	

VALEURS DE VENTILATION

Caractéristique	STND	+OPT	
Surface visuelle libre		88 %	n/a
Surface physique lib	Surface physique libre		n/a
Ce (une valeur plus élevée e	Ce (une valeur plus élevée est meilleure)		n/a
Cd (une valeur plus élevée est meilleure)		0,295	n/a
FACTEUR K	ASPIRATION	9,35	n/a
(une valeur plus basse est meilleure)	EXTRACTION	11,49	n/a

ÉTANCHÉITÉ À L'EAU 💸

Vitana da Unio	Cla	sse
Vitesse de l'air	STND	+0PT
0 m/s	Α	n/a
0,5 m/s	Α	n/a
1 m/s	Α	n/a
1,5 m/s	Α	n/a
2 m/s	Α	n/a
2,5 m/s	С	n/a


Modèle STND et +OPT : voir page 5

DucoWall Classic W 80HP

DucoWall Classic W 80HP est un bardage à ventelles filantes qui peut être fixé à une construction existante. Le système « glissercliquer » permet un montage rapide et simple. La forme unique de la lame « High Performance » assure une **bonne étanchéité à l'eau** et un **taux de passage d'air élevé**.

DIMENSIONS ET PROFILS PORTEURS

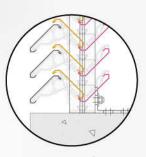
Type de profil porteur	50/12	21/50 Multi	50/50	50/125	
Pas de la lame	75 mm				
Profondeur de la lame	84 mm				
Profondeur d'installation	96 mm	134 mm	134 mm	209 mm	
Portée des lames maximale entre 2 profils porteurs		← 1350	mm \rightarrow		

VALEURS DE VENTILATION

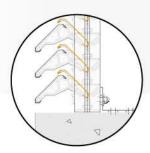
Caractéristique	STND	+0PT	
Surface visuelle libre		83 %	83 %
Surface physique libre		49 %	49 %
Ce (une valeur plus élevée est meilleure)		0,299	0,284
Cd (une valeur plus élevée est meilleure)		0,271	0,256
FACTEUR K	ASPIRATION	11,19	12,40
(une valeur plus basse est meilleure)	EXTRACTION	13,62	15,26

ÉTANCHÉITÉ À L'EAU 💦

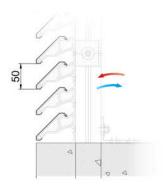
Vitesse de l'air	Cla	sse
vitesse de t air	STND	+0PT
0 m/s	Α	Α
0,5 m/s	В	В
1 m/s	В	С
1,5 m/s	С	С
2 m/s	С	С
2,5 m/s	D	D


Modèle STND et +OPT : voir page 5

Moustiquaire : maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm



→ Présentation des profils porteurs : voir page 39
 → Caractéristiques détaillées : voir page 40


W 60C/3 triple rangée de lames

W 60C/2 double rangée de lames

DucoWall Classic W 60C

Le modèle DucoWall Classic W 60C est un système « design » de bardages à ventelles filantes dont les lames ne sont pas réalisées en aluminium extrudé, mais « laminées à froid ». Les porte-lames en plastique assurent une solidité unique. Les trois versions (simples, doubles et triples) allient un taux de passage d'air maximum à une très grande étanchéité à l'eau, même en conditions atmosphériques extrêmes.

W 60C simple rangée de lames

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur		50/12	21/50 Multi	50/50	50/125
Pas de la lame		50 mm			
Profondeur de la	lame	77 mm			
	60C	89 mm	127 mm		
Profondeur d'installation	60C/2	ж		127 mm 20	202 mm
u ilistattation	60C/3				
Portée des lames entre 2 profils por		← 1250 mm →			

VALEURS DE VENTILATION

Caractéristique		60C		60C/2		60C/3	
		STND	+0PT	STND	+0PT	STND	+0PT
Surface visuelle	libre	84 %	84 %	84 %	84 %	84 %	84 %
Surface physiqu	e libre	46 %	46 %	36 %	36 %	36 %	36 %
Ce (une valeur plus éleve	ée est meilleure)	0,315	0,300	0,208	0,202	0,179	0,175
Cd (une valeur plus éleve	ée est meilleure)	0,305	0,291	0,196	0,191	0,153	0,151
FACTEUR K	ASPIRATION	10,08	11,11	23,11	24,51	31,21	32,65
(une valeur plus basse est meilleure)	EXTRACTION	10,75	11,81	26,03	27,41	42,72	43,86

Modèle STND et +OPT : voir page 5

Moustiquaire : maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm

4	Classe						
Étanchéi- té à l'air	60C		60C/2		60C/3		
te a t an	STND	+OPT	STND	+0PT	STND	+0PT	
0 m/s	В	В	Α	Α	Α	Α	
0,5 m/s	С	С	Α	Α	Α	Α	
1 m/s	С	С	В	В	Α	Α	
1,5 m/s	D	D	С	С	Α	Α	
2 m/s	D	D	С	С	Α	Α	
2,5 m/s	D	D	С	С	С	С	

DucoWall **Acoustic** W 75Z & 75L

Les DucoWall Acoustic W 75Z et W 75L sont des bardages à ventelles filantes **insonorisants**, réalisé en profils extrudés d'aluminium dont l'intérieur est rempli de laine minérale insonorisante et ininflammable. Les lames **de type Z ou L** peuvent être fixées sur les porte-lames en plastique pour différentes applications esthétiques.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur		50/12	21/50 Multi	50/50	50/125
Pas de la lame		60 mm			
Profondeur de la	lame	67 mm			
Profondeur	75Z	79 mm	117 mm	117 mm	192 mm
d'installation	75L	87 mm	125 mm	125 mm	200 mm
Portée des lames	75Z	←	1700	mm	\rightarrow
maximale entre 2 profils porteurs	75L	(1650) mm	\rightarrow

67.8 50 W 75Z W 75L

ATTÉNUATION ACOUSTIQUE

Valeur d'atténuation Rw (C ; Ctr)				
W 75Z	W 75L			
6 (0;-1) dB	6 (0;-1) dB 6 (0;-2) dB			

VALEURS DE VENTILATION

On manat for intimum		7!	5Z	75L	
Caractéristique		STND +0PT		STND	+0PT
Surface visuelle libre		76 %	76 %	95 %	95 %
Surface physique libre		28 %	28 %	28 %	28 %
Ce (une valeur plus élevée est meilleure)		0,196	0,196	0,212	0,209
Cd (une valeur plus élevée	est meilleure)	0,183	0,182	0,258	0,254
FACTEUR K	ASPIRATION	26,03	26,03	22,25	22,89
(une valeur plus basse est meilleure)	EXTRACTION	29,86	30,19	15,02	15,50

Modèle STND et +OPT : voir page 5

Moustiquaire : maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm

DucoWall Acoustic W 150 & 300

Le modèle DucoWall Acoustic W 150 est un bardage à ventelles filantes insonorisante, réalisé en profils extrudés d'aluminium dont l'intérieur est rempli de laine minérale insonorisante et ininflammable, destiné à fournir une **atténuation acoustique supplémentaire**. Dans le modèle DucoWall Acoustic W 300, deux lames 150 sont placées l'une derrière l'autre pour une isolation acoustique optimale.

DIMENSIONS ET PROFILS PORTEURS

Type de profil porteur		50/12	21/50 Multi	50/50	50/125
Pas de la lame		150 mm			
Profondeur de la la	me	142 mm			
Profondeur	150	154	192	192	267 mm
d'installation	300	mm	mm	mm	- 31
Portée des lames maximale entre 2 profils porteurs		←	2150	mm	\rightarrow

W 150 (rangée simple) W 300 (rangée double)

ATTÉNUATION ACOUSTIQUE

Valeur d'atténuation Rw (C ; Ctr)				
W 150	W 150 W 300			
11 (-1;-2) dB 17 (-1;-3) dB				

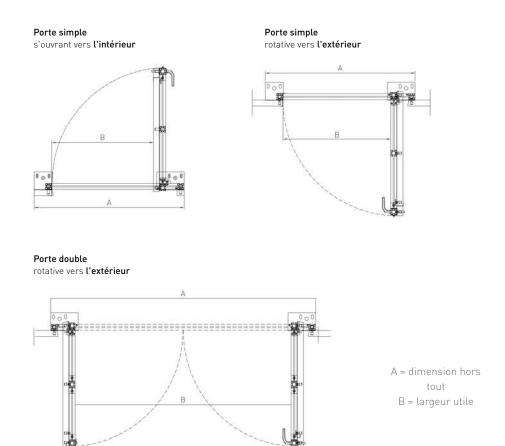
VALEURS DE VENTILATION

Competéniations		1	150		300	
Caractéristique		STND +0PT		STND	+0PT	
Surface visuelle libre		74 %	74 %	74 %	74 %	
Surface physique li	face physique libre		35 %	35 %	35 %	
Ce (une valeur plus élevée	est meilleure)	0,301	0,295	0,272	0,250	
Cd (une valeur plus élevée	est meilleure)	0,302	0,296	0,272	0,250	
FACTEUR K	ASPIRATION	11,04	11,49	13,52	16,00	
(une valeur plus basse est meilleure)	EXTRACTION	10,96	11,41	13,52	16,00	

Modèle STND et +OPT : voir page 5

Moustiquaire : maille inox en option 2,3 x 2,3 mm ou 6 x 6 mm

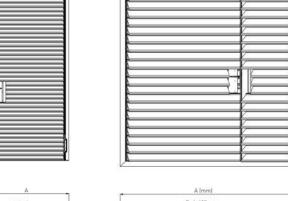
LIANCHLITE A L LAO						
4	Classe					
Étanchéité à l'air	15	50	300			
	STND +0PT		STND	+OPT		
0 m/s	В	В	Α	Α		
0,5 m/s	С	С	В	В		
1 m/s	С	С	В	В		
1,5 m/s	С	С	С	С		
2 m/s	D	D	С	С		
2,5 m/s	D	D	D	D		


PORTES À VENTELLES DUCO

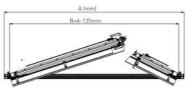
La gamme des portes à ventelles permet de choisir entre la **DucoDoor Wall**, la **DucoDoor Louvre** et la **DucoDoor Grille** en fonction des exigences esthétiques, techniques et juridiques du bâtiment. Les portes à ventelles DUCO conviennent aux applications dans les locaux (techniques), situés ou non au niveau du sol, dans les parkings... aussi bien dans la **version à ventilation** qu'en tant que **porte à persiennes** (anti-courants d'air). Toutes les portes garantissent une **façade élégante et uniforme**.

Туре						
	DucoDoor Wall voir p. 31	DucoDoor Louvre voir p. 32	DucoDoor Grille voir p. 33			
Application	Porte à ventelles dans un système de bardage à ventelles filantes sans exigences particulières.	Porte à ventelles à ventilation ou porte à persiennes dans un système de bardage à ventelles filantes avec des exigences spécifiques contre les intrusions et / ou les courants d'air.	Porte à ventelles à ventilation ou porte à persiennes autonome, avec ou sans exigences spécifiques contre les intrusions et / ou les courants d'air.			
À l'épreuve du vandalisme	✓ Avec lames Solid 30Z	✓ Avec lames Solid 30Z	✓			
Anti-effraction RC2	×	RC2 possible avec lames NP ou P1 à l'intérieur	√ RC2 possible avec lames NP ou P1			
Étanche aux courants d'air	30	Possible avec lames NP	Possible avec lames NP			
Lames	Gamme DucoWall complète possible	Gamme DucoWall complète possible en tant que lame de structure, éventuellement combinée à des lames Solid 30Z à l'intérieur	Lames Solid 30Z NP, P1 ou P2			
Angle d'ouverture	90°	<u>√180°</u>	180°			
Conceptions possibles	Porte simple / double rotative vers l'intérieur / l'extérieur s'ouvrant vers la gauche / la droite					
Dimensions utiles maximales	Porte simple : l 1500 x H 3000 mm Porte double : l 3000 x H 3000 mm					
Accessoires de portes	Muni en version standard d'une poignée sur le côté intérieur de la porte et d'une poignée en T sur le côté extérieur. D'autres combinaisons sont disponibles sur demande. Barre anti-panique rapide possible pour les portes servant d'issue de secours (uniquement pour les portes d'une hauteur inférieure à 2,2 m et uniquement dans le cas de portes s'ouvrant vers l'extérieur et non-antieffraction).					

La DucoDoor Wall est une **porte pivotante** (rotative) qui peut être facilement montée avec les mêmes lames et profils que le bardage à ventelles filantes que vous avez choisi. Grâce à sa large gamme de lames Solid, Classic et Screening, la DucoDoor Wall s'intègre de manière transparente et **invisible dans un bardage à ventelles filantes complet.** Ainsi, la façade reste à coup sûr élégante et **uniforme**.



Avec la DucoDoor Louvre, DUCO a développé une porte à ventelles anti-effraction qui a été largement testée par SKG conformément aux normes européennes (EN 1627:2011 et NEN 5096 + C2:2011) et peut présenter une classe de résistance RC2. La DucoDoor Louvre peut également être rendue étanche aux courants d'air. Grâce aux charnières appliquées sur le côté, une grande largeur utile est obtenue et la porte peut être ouverte à 180°. Ce type de porte à ventelles peut être facilement intégré dans le bardage à ventelles filantes du fait que la gamme complète de lames Solid, Classic et Screening peut être exploitée.



Porte double s'ouvrant vers **l'intérieur**

A = dimension hors tout B = largeur utile

En tant que **porte d'accès autonome**, la DucoDoor Grille est idéale pour les murs qui ne sont pas couverts de lames. Les **lames Solid**

intégrées standard (type 30Z), qui peuvent être poncées de trois façons différentes (P1, P2 ou NP), conféreront à la façade un caractère esthétique et expressif. La DucoDoor Grille est également bien notée au niveau de la sécurité anti-effraction. Les lames Solid sécurisent chaque modèle contre le vandalisme. En outre, cette porte à ventelles a été testée par SKG conformément aux normes européennes (EN 1627:2011 & NEN 5096+C2:2011) et peut être livrée avec une certification RC2. En outre, la DucoDoor Grille est entièrement étanche aux courants d'air. Grâce aux charnières appliquées sur le côté, une grande largeur utile est obtenue et la porte peut être ouverte à 180°.

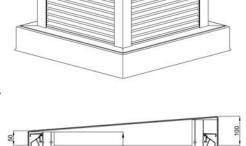
Porte simple s'ouvrant vers **l'intérieur**

Porte double rotative vers l'extérieur

A = dimension hors tout B = largeur utile

ANTI-EFFRACTION

DucoDoor Grille est réalisable en option jusqu'à la classe antieffraction RC2. Certificat disponible sur demande.


CARACTÉRISTIQUES

DucoDoor Grille utilise des lames Solid 30Z. Vous retrouverez à la page 8 toutes les caractéristiques relatives à la capacité de ventilation, l'étanchéité à l'eau et la protection contre les insectes.

Duco Roof Turret Solid 30Z

Duco Roof Turret Solid 30Z est une édicule de toiture en aluminium. qui permet de masquer les ouvertures d'aération de manière esthétique. L'édicule de toiture assure en outre une ventilation intensive suffisante des locaux protégés et peut être utilisé dans presque tout les projets. Les lames perforées Solid 30Z sont une solution parfaite en termes de protection contre les insectes et de capacité de ventilation. Grâce aux grandes perforations « P2 », cette petite édicule de toiture atteint également d'importantes valeurs de ventilation. Les édicules de toiture sont entièrement réalisées sur mesure et dotées d'un seuil dans la partie inférieure et d'une plaque de couverture sur la partie supérieure.

DIMENSIONS

Pas de la lame	37,5 mm			
Longueur de l'édicule de toiture	Min. 200 mm - Max. 2630 mm (à coupler)			
Largeur de l'édicule de toiture	Min. 200 mm - Max. 1180 mm (à coupler)			
Hauteur de l'édicule de toiture	Min. 255 mm - Max. 1600 mm			

VALEURS DE VENTILATION

Caractéristique		P1	P2	P2 + ECG*
		STND	STND	STND
Surface visuelle lib	re	60 %	86 %	86 %
Surface physique libre		34 %	48 %	48 %
Ce (une valeur plus élevée est meilleure)		0,243	0,258	0,179
Cd (une valeur plus élevée	est meilleure)	0,234	0,253	0,202
FACTEUR K	ASPIRATION	16,94	15,02	31,21
(une valeur plus basse est meilleure)	EXTRACTION	18,26	15,62	24,51

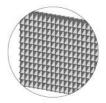
 ${\bf Mod\`{e}le~STND~et~+OPT:voir~page~5}$

*ECG = grille de caisse à œufs (voir page 35)

	Classe					
Étanchéité à l'air	P1	P2	P2 + ECG*			
	STND	STND	STND			
0 m/s	В	С	Α			
0,5 m/s	С	С	Α			
1 m/s	С	С	Α			
1,5 m/s	D	D	В			
2 m/s	D	D	С			
2,5 m/s	D	D	С			

Profil de seuil

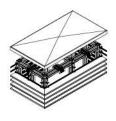
La Duco Roof Turret Solid 30Z existe également en variante avec profil de seuil. Le profil de seuil assure une meilleure évacuation de l'eau. Grâce au profil de seuil, la couverture du toit peut être complètement dissimulée. Cela donne une finition esthétique. Par conséquent, les possibilités de placement sont également plus nombreuses.



OPTIONS DUCO ROOF TURRET SOLID 30Z

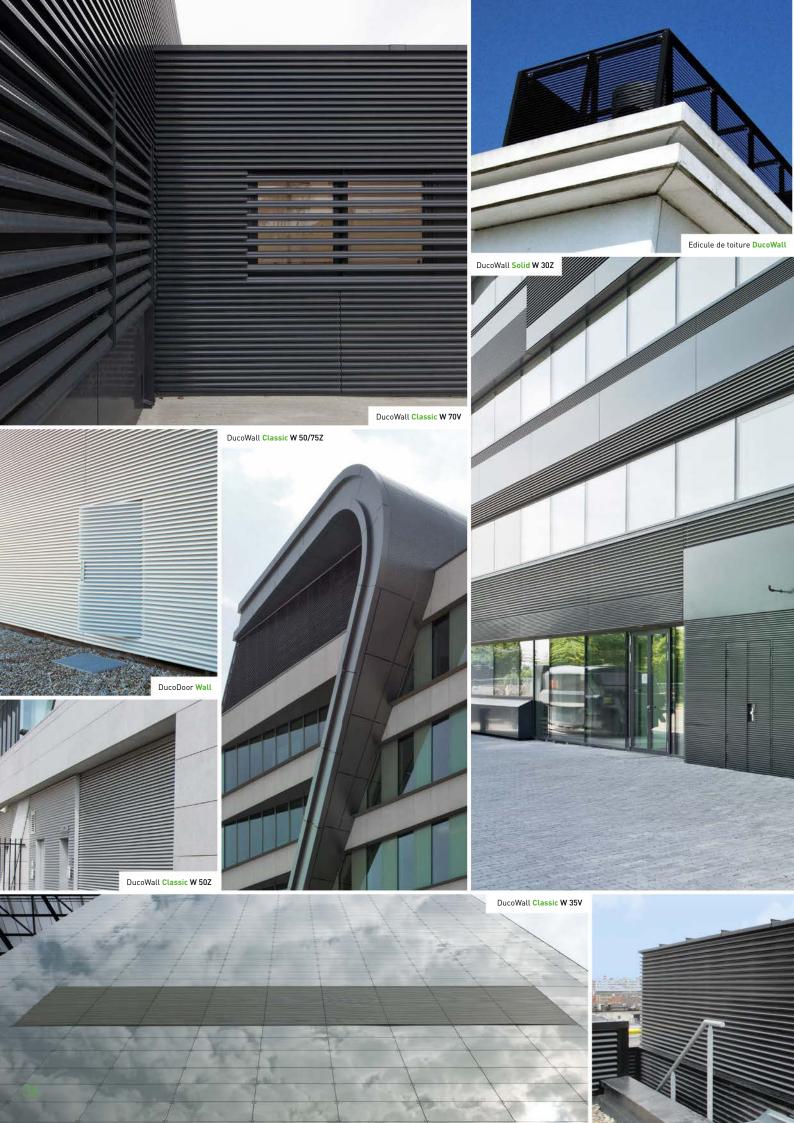
DucoGrille Close 105

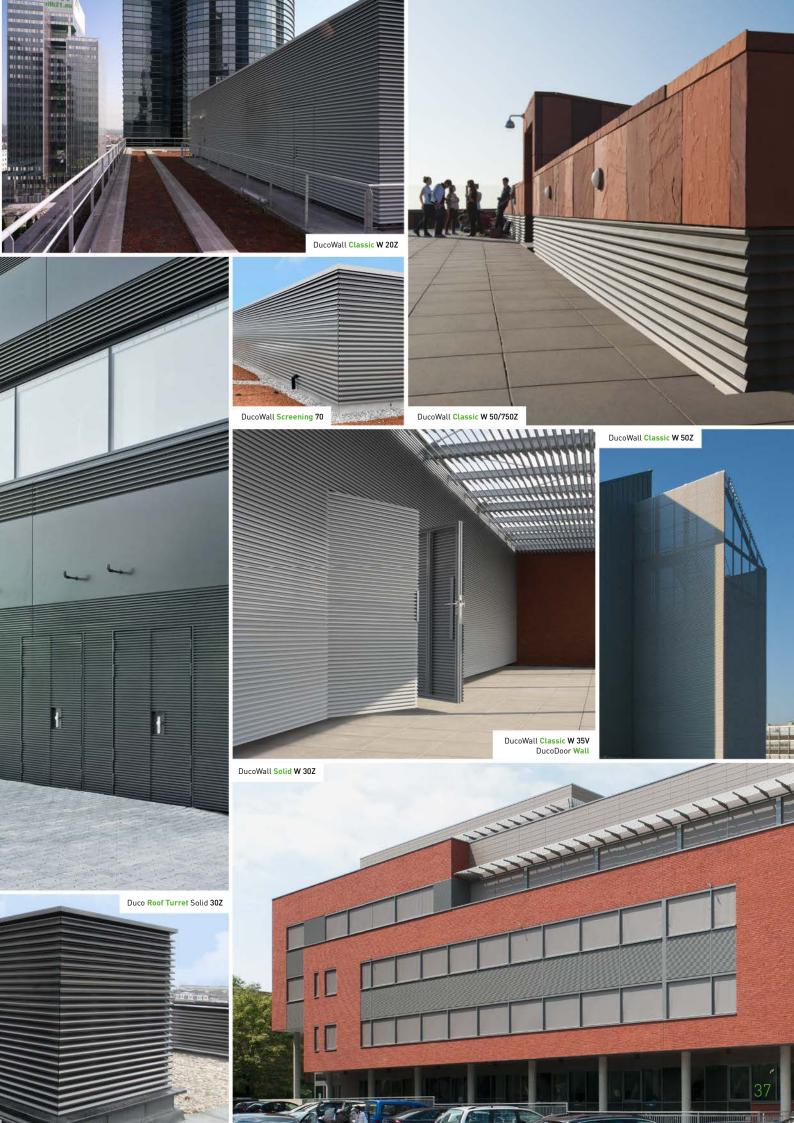
La DucoGrille Close 105 peut être intégrée en option dans l'édicule de toiture, ce qui garantit une pulsion et une extraction d'air contrôlée. Pour plus d'informations sur la DucoGrille Close 105, veuillez vous référer à notre brochure « grilles de ventilation ».



Grille de caisse à œufs

La Duco Roof Turret Solid 30Z est disponible en option avec une grille de caisse à œufs offrant une étanchéité à l'eau encore meilleure (en combinaison avec des lamelles P2).


ÉDICULES DE TOITURE AVEC D'AUTRES LAMES


Outre la Duco Roof Turret Solid 30Z, DUCO propose également un système compatible avec pratiquement **tous les types de lames** de la gamme DucoWall. Ces édicules de toiture sont constituées de profils de la gamme DucoWall. La plaque de couverture et les seuils de finition sont inclus. En tant que pièces détachées, ils sont disponibles en kits semi-assemblés ou en kits entièrement assemblés. Plus d'informations ? Contactez votre revendeur DUCO.

SERVICE S'IL VOUS PLAÎT!

Pour un soutien optimal de votre projet, vous trouverez des dessins de coupe, des fiches techniques, des cahiers des charges et des instructions de montage sur notre site web www.duco.eu.

Découvrez ce que DUCO peut encore vous apporter.

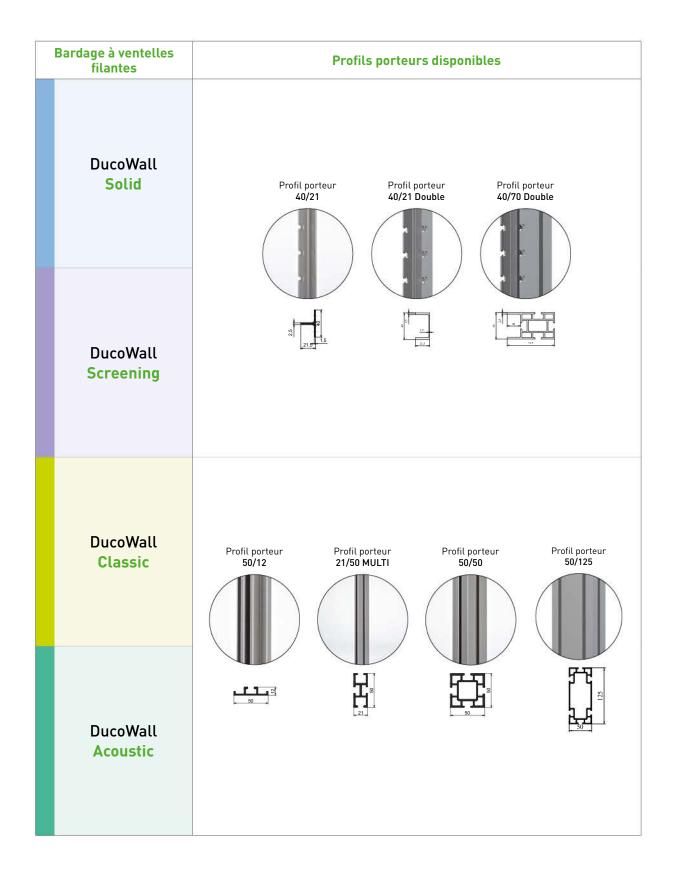
Calculer le taux de passage d'air \rightarrow calculdeventilation.duco.eu

Calculer les débits d'air nécessaires, la surface ou les différences de pression pour chaque type de grille à l'aide de cet outil en ligne pratique.

Bibliothèque BIM → www.duco.eu/bim

Tous les produits de cette bibliothèque sont disponibles gratuitement dans Autodesk Revit.

Contenus des cahiers des charges \rightarrow Vous trouverez des cahiers des charges de tous les produits sur notre site Internet **www.duco.eu**.



CONSEILS SUR MESURE

DUCO met son expertise à votre disposition, vous propose des services sur mesure et a créé en son sein une équipe spécialisée pour conseiller et aider les architectes, les bureaux d'étude et les bureaux de conseils. DUCO coopère avec des institutions réputées telles que le CSTC, l'Institut Von Karman... Nos connaissances et nos longues années d'expérience nous permettent de proposer une solution adaptée à chacun de vos projets.

Des questions ? Contactez-nous à l'adresse info@duco.eu ou au numéro +32 58 33 00 66 pour bénéficier de conseils sur mesure !

PRÉSENTATION DES PROFILS PORTEURS

TABLEAU DES VALEURS TECHNIQUES

					SOI	LID											
→ Valeurs de ventilation				Solid 30Z voir p. 8			Classic 20Z voir p. 14		Classic 20V voir p. 15		Classic 35V voir p. 16		Classic 50Z/30° voir p. 17				
				P1	Р	2	NP							Pas	s 65	Pas	. 75
	Caractéristiq	ue	Unité	STND	STND	+OPT	STND	STND	+0PT	STND	+OPT	STND	+0PT	STND	+OPT	STND	+OPT
Surface visuelle	libre		%	60	86	86	0	63	63	95	95	59	59	41	41	49	49
urface physique	e libre		%	34	48	48	0	47	47	37	37	35	35	40	40	46	46
acteur K aspirat				21,43	18,26	18,58	n/a	22,68	24,27	41,62	45,04	71,82	74,32	14,57	15,62	10,27	10,4
ine valeur plus bas acteur K extrac														-			
ine valeur plus bas	sse est meilleure)			17,08	13,62	14,13	n/a	30,52	33,03	41,62	45,04	65,04	66,10	10,54	10,96	8,70	8,86
e (une valeur plus				0,216	0,234	0,232	n/a	0,210	0,203	0,155	0,149	0,118	0,116	0,262	0,253	0,312	0,31
d (une valeur plus	s élevée est meille	ure)		0,242	0,271	0,266	n/a	0,181	0,174	0,155	0,149	0,124	0,123	0,308	0,302	0,339	0,33
	Caractéristiqu	ue	Unité	P1 STND	P STND	2 +0PT	NP STND	STND	+0PT	STND	+OPT	STND	+0PT	Pas STND	+0PT	Pas STND	75 +0P
tanchéité à l'ea	u à v = 0 m/s		classe	В	В	В	n/a	С	В	Α	Α	Α	Α	В	Α	В	В
· · · · · · · · · · · · · · · · · · ·			classe	В	С	В	n/a	С	В	В	A	A	A	С	В	С	В
anchéité à l'ea														С	В	С	С
anchéité à l'ea			classe	С	С	В	n/a	D	С	С	В	Α	Α				
tanchéité à l'ea tanchéité à l'ea	au à v = 1,5 m/s		classe	С	С	В	n/a	D	D	D	В	Α	A	С	С	С	
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s											_					C C D
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s	stiques	classe classe	C D D	C D D	B C D	n/a n/a n/a	D D	D D	D D	B C	A C	A B	C D D	C C C	C D D	C D
stanchéité à l'ea stanchéité à l'ea stanchéité à l'ea stanchéité à l'ea Valeu	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s		classe classe classe	C D D	C D D	B C D	n/a n/a n/a	D D D	D D D	D D D	B C D	C C	A B C	C D D	C C C	C D D	C D
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Valeu	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s	stiques	classe classe	C D D	C D D	B C D	n/a n/a n/a	D D D	D D D	D D	B C D	A C	A B C	C D D	C C C	C D D	C D
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s	stiques	classe classe classe	C D D	C D D	B C D	n/a n/a n/a NP n/a	D D D	D D D D	D D D	B C D	A C C	B C	C D D	C C C	C D D Pas	75 /a
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s ITS ACOUS	stiques	classe classe classe	C D D n/a n/a	C D D D	B C D D	n/a n/a n/a NP n/a n/a	D D D D NA	D D D D	D D D	B C D	A C C	A B C	C D D D	C C C	C D D Pas	75 /a /a /a
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s ITS ACOUS	stiques lution à 125 Hz à 250 Hz	classe classe classe dB	P1 n/a n/a n/a n/a	P P N/ N/ N/ N/ N/	B C D D 22 // a // a // a // a // a // a //	n/a n/a n/a n/a NP n/a n/a n/a n/a n/a n/a	D D D D N/V	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	B C D	A C C C	A B C C	Pas	C C C	Pas	C D
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s ITS ACOUS	stiques Lution à 125 Hz à 250 Hz à 500 Hz	classe classe classe dB dB dB dB	P1 n/a n/a n/a n/a n/a n/a	P P NA	B C D D	n/a n/a n/a n/a NP n/a n/a n/a n/a n/a n/a n/a n/a	D D D D	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	B C D	A C C	A B C	Pas	C C C C C C C C C C C C C C C C C C C	Pas	75 /a /a /a /a /a /a /a
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s ITS ACOUS	**Stiques** Lution à 125 Hz à 250 Hz à 500 Hz à 1000 Hz	classe classe classe dB dB dB dB dB	P1 n/a n/a n/a n/a n/a n/a n/a	P P N/	B C D D	n/a n/a n/a n/a NP n/a n/a n/a n/a n/a n/a n/a n/a n/a	D D D D D D D D D D D D D D D D D D D	D D D A A A A A A A A A A A A A A A A A	D D D D D D D D D D D D D D D D D D D	B C D	A C C C	A B C C	Pass	C C C C C C C C C C C C C C C C C C C	Pas	C D D S 75 /a
	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s ITS ACOUS	stiques Lution à 125 Hz à 250 Hz à 500 Hz	classe classe classe dB dB dB dB	P1 n/a n/a n/a n/a n/a n/a	P P NA	B C D D	n/a n/a n/a n/a NP n/a n/a n/a n/a n/a n/a n/a n/a	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	B C D	A C C	/a	Passon non non non non non non non non non	C C C C C C C C C C C C C C C C C C C	Pas	75 /a /a /a /a /a /a /a
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s au à v = 2,5 m/s sol es d'octaves as porteunsions	\$\text{stiques}\$ a 125 Hz a 250 Hz a 500 Hz a 1000 Hz a 2000 Hz a 4000 Hz urs et	classe classe classe dB dB dB dB dB dB	P1	P P NA	B C D D	n/a	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	B C D	A C C C	/a	Pas	C C C C C C C C C C C C C C C C C C C	Pas	C D D S 5 75
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Valeu Rw C C _{tr} Valeurs de bande Profil dimer	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s au à v = 2,5 m/s ITS acous sol es d'octaves	\$\text{stiques}\$ a 125 Hz a 250 Hz a 500 Hz a 1000 Hz a 2000 Hz a 4000 Hz urs et	classe classe classe dB dB dB dB dB dB Unité	P1	PP P P P P P P P P P P P P P P P P P P	2	n/a n/a n/a n/a NP n/a	D D D D D D D D D D D D D D D D D D D	/a //a //a //a //a //a //a //a //a //a	D D D D D D D D D D D D D D D D D D D	B C D	A C C C	A B C C	Pas	C C C C C C C C C C C C C C C C C C C	Pass	75 75 /a /a //a //a //a //a //a //a //a //a
Étanchéité à l'ear	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s au à v = 2,5 m/s ITS acous sol es d'octaves Ls porteunsions Caractéristique	\$\text{stiques}\$ a 125 Hz a 250 Hz a 500 Hz a 1000 Hz a 2000 Hz a 4000 Hz urs et	classe classe classe dB dB dB dB dB dB	P1	P P NA	B C D D 22 // a // a // a // a // a // a //	n/a	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	## B	A C C C	/a B C C	Pas	C C C C C C C C C C C C C C C C C C C	Pas	75 75 //a //a //a //a //a //a //a //a //a //
Étanchéité à l'ear	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s ITS ACOUS Sol es d'octaves LS porteunsions Caractéristique a lame	\$\text{stiques}\$ a 125 Hz a 250 Hz a 500 Hz a 1000 Hz a 2000 Hz a 4000 Hz urs et	classe classe classe dB dB dB dB dB dB dB mathematical description of the description of	P1	P P S 37	B C D D 22 // a // a // a // a // a // a //	n/a	D D D D D D D D D D D D D D D D D D D	/a /	D D D D D D D D D D D D D D D D D D D	## C D D	A C C C	/a B C C	Pas	C C C C C C C C C C C C C C C C C C C	Pas	75 75 /a
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Valeur Rw C C _{tr} Valeurs de bande Profil dimer	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s au à v = 2,5 m/s ITS acous sol es d'octaves LS porteunsions Caractéristique a lame Solid	\$\text{stiques}\$ Lution \[\text{a 125 Hz} \\ \text{a 250 Hz} \\ \text{a 500 Hz} \\ \text{a 1000 Hz} \\ \text{a 2000 Hz} \\ \text{a 4000 Hz} \] URS et	classe classe classe dB dB dB dB dB dB mathrid dB	P1	P P 37 3 5 5	B C D D 22 // a // a // a // a // a // a //	n/a	D D D D D D D D D D D D D D D D D D D	/a /	D D D D D D D D D D D D D D D D D D D	## C D D	A C C C	/a B C C	Pas	C C C C C C C C C C C C C C C C C C C	Pas	/a /
Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Étanchéité à l'ea Valeu Rw C C C v Valeurs de bande Profondeur de la	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s au à v = 2,5 m/s ITS acous sol es d'octaves LS porteunsions Caractéristique a lame Solid	\$\text{stiques}\$ ution \[\text{a 125 Hz} \\ \text{a 250 Hz} \\ \text{a 500 Hz} \\ \text{a 1000 Hz} \\ \text{a 2000 Hz} \\ \text{a 4000 Hz} \] urs et	classe classe classe dB dB dB dB dB dB mathrid dB	P1	P P 37 3 5 5	B C D D 22 //a //a //a //a //a //a //a //a //a	n/a	D D D D D D D D D D D D D D D D D D D	/a /	D D D D D D D D D D D D D D D D D D D	## C D D	A C C C	A B C C	Pass nn n	C C C C C C C C C C C C C C C C C C C	Pas	/a /
Étanchéité à l'eai Profil d'imer Profondeur d'installation pour le profil	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s au à v = 2,5 m/s ITS acous sol es d'octaves LS porteunsions Caractéristique a lame Solid	\$\text{stiques}\$ ution \[\text{a 125 Hz} \\ \text{a 250 Hz} \\ \text{a 500 Hz} \\ \text{a 1000 Hz} \\ \text{a 2000 Hz} \\ \text{a 4000 Hz} \] urs et \[\text{40/21 (Double)} \\ 40/70 Double	classe classe classe classe dB dB dB dB dB dB dB mm mm mm	P1	P P N N N N N N N N N N N N N N N N N N	B C D D 22 //a //a //a //a //a //a //a //a //a	n/a	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	## B	A C C C	A B C C	Passon non non non non non non non non non	C C C C C C C C C C C C C C C C C C C	Pas	/a /
Étanchéité à l'eai	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s ATS ACOUS Sol es d'octaves Caractéristique a lame Solid Screening	\$\frac{1}{25 \text{ Hz}} \\ \text{a} 250 \text{ Hz}} \\ \text{a} 250 \text{ Hz}} \\ \text{a} 250 \text{ Hz}} \\ \text{a} 1000 \text{ Hz}} \\ \text{a} 1000 \text{ Hz}} \\ \text{a} 2000 \text{ Hz}} \\ \text{a} 4000 \text{ Hz}} \\ \text{a} 4000 \text{ Hz}} \\ \text{urs et} \text{urs et} 40/21 (Double) 40/70 Double 50/12	classe classe classe classe dB dB dB dB dB dB mm mm mm mm mm	P1	P P N N N N N N N N N N N N N N N N N N	B C D D 22 // 2 // 2 // 2 // 2 // 2 // 2	n/a	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	B C D D S S S S S S S S S S S S S S S S S	A C C C	A B C C	Pas n.	C C C C C C C C C C C C C C C C C C C	Pass	/a //a //a //a //a //a //a //a //a //a
Étanchéité à l'eai Profil d'imer Profondeur d'installation pour le profil	au à v = 1,5 m/s au à v = 2,0 m/s au à v = 2,5 m/s au à v = 2,5 m/s ITS acous Sol es d'octaves LS porteunsions Caractéristique a lame Solid Screening Classic	\$\frac{125 \text{ Hz}}{\text{a} 250 \text{ Hz}}{\text{a} 250 \text{ Hz}}{\text{a} 1000 \text{ Hz}}{\text{a} 1000 \text{ Hz}}{\text{a} 2000 \text{ Hz}}{\text{a} 4000 \text{ Hz}}{\text{a} 4000 \text{ Hz}}\$ UP 40/21 (Double) 40/70 Double 50/12 21/50 MULTI	classe classe classe classe dB dB dB dB dB dB mm mm mm mm mm mm mm	P1	P P N N N N N N N N N N N N N N N N N N	B C D D 22 // 2 // 2 // 2 // 2 // 2 // 2	n/a	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	D D D D D D D D D D D D D D D D D D D	B C D D S S S S S S S S S S S S S S S S S	A C C C	A B C C	Pass n. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	C C C C C C C C C C C C C C C C C C C	Pass	75 75 //a //a //a //a //a //a //a //a //a //

DUCOWALL HP HP HP HP Classic Classic Classic Classic Classic Classic Classic Classic 50/75Z 70V 130HP **80HP** 60C 50Z **45HP 50HP** voir p. 25 voir p. 19 voir p. 21 voir p. 22 voir p. 23 voir p. 24 voir p. 18 voir p. 20 STND +OPT STND +OPT STND +OPT STND +OPT STND +0PT STND STND +OPT STND +OPT STND +OPT STND +OPT 80 84 84 75 80 65 65 70 70 88 88 88 83 83 84 84 84 84 75 52 52 54 54 44 44 60 60 68 68 70 49 49 46 46 36 36 36 36 23,80 23,34 20,85 20,85 73,05 81,16 11,49 11,49 7,80 8,07 9,35 11,19 12,40 10,08 11,11 23,11 24,51 31,21 32,65 12,94 14,13 11,34 12,06 84,17 94,26 6,75 7,34 5,19 5,81 11,49 13,62 15,26 10,75 11,81 26,03 27,41 42,72 43,86 0.219 0.219 0.295 0.3 0.205 0.207 0.117 0,111 0.295 0.358 0.352 0.327 0.299 0.284 0.315 0.208 0.202 0.179 0.175 0,278 0,266 0,297 0,288 0,109 0,103 0,385 0,369 0,439 0,415 0,295 0,271 0,256 0,305 0,291 0,196 0,191 0,153 0,151 STND STND STND STND STND +OPT STND +OPT STND +OPT STND +OPT +0PT +OPT +OPT STND STND +OPT +0PT В В Α С В С В Α В В Α Α Α Α С С В С В В В С В С В Α В В С A Α A С В С В В В С С С В Α В С С С В В Α Α С С С D С С C С С D С Α C C D D С Α D С D С D D D С D С Α С С D D С С Α С D D D D D D D С D С D D D D С С С С n/a 65 75 65 50 50 50 75 50 50 50 53 53 75 48 56 133 84 77 77 77 X 30 × 30 ś¢ 30 JC × x × 65 65 87 ۸n 68 145 96 89 35 30

103

103

178

1550

103

103

178

1550

125

125

200

2150

98

98

143

1330

106

106

181

1100

183

183

258

2300

134

134

209

1350

127

127

202

1250

Sc

127

202

1250

30

127

202

1250

TABLEAU DES VALEURS TECHNIQUES

TECHNIQUES				DUCOWALL ACOUSTIC									
				75	oustic 7 5Z - p. 28	75	oustic 7 5L - p. 28	15	oustic 1 50	30	ustic 00 p. 29		
→ Valeui	rs de ve	entilation			J. 20		J. 20		p. 27). 27		
	Caractéristiqu	ue	Unité	STND	+0PT	STND	+0PT	STND	+OPT	STND	+0PT		
Surface visuelle l	libre		%	76	76	95	95	74	74	74	74		
Surface physique			%	28	28	28	28	35	35	35	35		
Facteur K aspirat (une valeur plus bass				26,03	26,03	22,25	22,89	11,04	11,49	13,52	16,00		
Facteur K extract				29,86	30,19		15,50	10,96	11,41	13,52	16,00		
(une valeur plus bass	asse est meilleure)				+	15,02							
Ce (une valeur plus Cd (une valeur plus				0,196	0,196 0,182	0,212 0,258	0,209 0,254	0,301 0,302	0,295 0,296	0,272	0,250 0,250		
→ Étanc	Caractéristiqu		Unité	STND	+0PT	STND	+0PT	STND	+0PT	STND	+OPT		
Étanchéité à l'eau	au à v = 0 m/s		classe	В	В	В	В	В	В	A	A		
Étanchéité à l'eau			classe	В	В	В	В	С	c	В	В		
Étanchéité à l'eau			classe	С	С	C	С	С	С	В	В		
Étanchéité à l'eau Étanchéité à l'eau			classe classe	C D	C D	D D	D D	C D	C D	C	C		
Étanchéité à l'eau			classe	D	D	D	D	D	D	D	D		
→ Valeui		stiques											
Rw			dB		6		6		11		17		
C				1	0		0		-1		-1		
C _{tr} Valeurs de bande	les d'octaves	à 125 Hz	dB		-1 2,7		-2 2,6		-2 4,8		-3 7,8		
Valeurs	/5 u oc	à 250 Hz			3,5	3			4,0		8		
		à 500 Hz	dB	2,1		1,	1,9	7,	7,4	14	4,9		
		à 1000 Hz		4,8			4,4 9,7	_	11,4		7,8 7.7		
		à 2000 Hz à 4000 Hz		10,1 12,4			9,7		12,4		7,7 2,4		
→ Profils	nsions												
			Unité										
Pas de la lame Profondeur de la	n lame		mm mm	-	67		60 75	150		150 142			
Promueur ac	Solid	40/21 (Double)	mm mm	+	×		/5 &	_	142		42 X		
		40/70 Double	mm	1	×		K	×		×			
Profondeur d'installation		50/12	mm		79		87	154			K		
		21/50 MULTI	mm	1	117	1'	125	1′	192		334		
pour le profil porteur	Classic			1				192		334			
pour le profil porteur	Classic Acoustic	50/50	mm	11	117	12	125						
porteur	Acoustic		mm mm	11		12 20	125 200 650	26	192 267 2150	.3	150		

Modèle STND et +OPT : voir page 5

DUCOWALL SCREENING

Screening 35

voir p. 12

Screening 70

voir p. 13

Pas 75		Pas 112		Pas 150		Pas 75		Pas 112		Pas 150	
STND	+OPT	STND	+OPT	STND	+OPT	STND	+0PT	STND	+0PT	STND	+0PT
52	52	68	68	76	76	53	53	68	68	77	77
29	29	27	27	35	35	37	37	59	59	55	55
61,04	61,04	67,19	68,30	23,56	24,03	30,19	30,52	22,25	22,25	13,72	14,35
38,10	38,58	33,03	32,65	19,93	20,29	25,00	25,77	13,72	14,13	10,21	10,54
0,128	0,128	0,122	0,121	0,206	0,204	0,182	0,181	0,212	0,212	0,270	0,264
0,162	0,161	0,174	0,175	0,224	0,222	0,200	0,197	0,270	0,266	0,313	0,308

Pas 75 Pas 112		Pas 150		Pas 75		Pas 112		Pas 150			
STND	+OPT	STND	+0PT	STND	+OPT	STND	+OPT	STND	+OPT	STND	+OPT
Α	Α	В	В	С	С	В	Α	В	В	С	С
В	В	С	В	С	С	С	В	С	В	D	С
В	В	С	С	D	D	С	С	С	С	D	D
D	D	D	D	D	D	С	С	С	С	D	D
D	D	D	D	D	D	D	D	D	С	D	D
D	D	D	D	D	D	D	D	D	D	D	D

Pas 75	Pas 112	Pas 150	Pas 75	Pas 112	Pas 150
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a
n/a	n/a	n/a	n/a	n/a	n/a

			10				
Pas 75	Pas 112	Pas 150	Pas 75	Pas 112	Pas 150		
75	112	150	75	112	150		
43	43	43 43		82	82		
57	57	57	94,5	94,5	94,5		
107	107	107	145	145	145		
	30		×				
	30		X.				
	×		X.				
	X		ж.				
	2000		2400 2400 2400				

