### **LOUVRE WALL SYSTEMS**





## HOME OF OXYGEN

DUCO Ventilation & Sun Control provides every building with a healthy supply of oxygen. With a comprehensive range of innovative natural and mechanical ventilation systems, either combined with external solar shading or otherwise, DUCO offers the ultimate guarantee of a healthy and comfortable indoor climate. The occupant's health is,

therefore, central to DUCO. A well-thought-out combination of basic ventilation, mechanical extraction, purge ventilation and solar shading ensures optimum air quality.

DUCO provides an innovative solution for residential buildings, offices, schools or care centres where everyone feels at home.

DUCO, Home of Oxygen



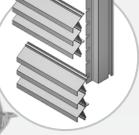
| GENERAL                                                                                                                                                                                                                                                                                                                       | 4        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| PRODUCTS                                                                                                                                                                                                                                                                                                                      | 6        |
| DUCOWALL SOLID  DucoWall Solid W 30Z                                                                                                                                                                                                                                                                                          | 8        |
| DucoWall Screening 35  DucoWall Screening 70                                                                                                                                                                                                                                                                                  |          |
| DUCOWALL CLASSIC  DucoWall Classic W 20V  DucoWall Classic W 35V  DucoWall Classic W 50Z/30°  DucoWall Classic W 50Z  DucoWall Classic W 50/75Z  DucoWall Classic W 70V  DucoWall Classic W 45HP  DucoWall Classic W 50HP  DucoWall Classic W 130HP  DucoWall Classic W 80HP  DucoWall Classic W 80HP  DucoWall Classic W 60C |          |
| DUCOWALL ACOUSTIC  DucoWall Acoustic W 75Z & W 75L  DucoWall Acoustic W 150 & W 300                                                                                                                                                                                                                                           |          |
| DUCODOOR LOUVRE DOORS  DucoDoor Wall  DucoDoor Louvre  DucoDoor Grille                                                                                                                                                                                                                                                        | 31<br>32 |
| ROOF TURRETS  Duco Roof Turret Solid 30Z                                                                                                                                                                                                                                                                                      | 34       |
| IMPACT AND FALL-THROUGH PROTECTION                                                                                                                                                                                                                                                                                            | 36       |
| REFERENCE PROJECTS                                                                                                                                                                                                                                                                                                            | 38       |
| VARIOUS  Service  Overview of mullions  Technical condition table                                                                                                                                                                                                                                                             | 40       |
| Technical specification table                                                                                                                                                                                                                                                                                                 | 42       |

**DISCLAIMER**Illustrations in this catalogue may differ from actual product. Printing errors and/or changes excepted. DUCO reserves the right to amend this information at any time. The information stated is valid as at 02.04.2024 and may be subject to changes in legislation.

### A SOLUTION FOR **EVERY SITUATION**

#### → Quick assembly

With DUCO's patented 'Turn-Click' system for DucoWall Classic and Acoustic, plastic louvre holders are prefastened to the mullion. The louvre blades are easily clicked on to this.








With DUCO's patented 'Direct Clip' system for DucoWall

Solid and Screening, the louvre blades are clicked onto the mullion directly, ensuring superquick assembly.



Triple Solid 30Z louvre blades

#### → Finish

Each type of louvre wall is available in any colour: SAA, any RAL colour, textured paint, special paints/ lacquers, etc. Every type of louvre wall is lacquered as standard in SeaSide grade. In addition, every type of louvre wall in this brochure complies with the Qualicoat or Qualanod quality specifications.





#### → Vandalism and intrusion security



Solid louvre blades are very sturdy and 'vandal-proof'.





Each type of louvre wall (DucoWall Solid, Classic\*, Acoustic and Screening) and the DucoDoor Louvre and Grille louvre doors have the option of being manufactured burglaryresistant up to resistance class

2 in accordance with European standards.

\* Except for DucoWall Classic W 60C/2, W 60C/3 and DucoWall Acoustic W 300

#### → Insect screen and vermin screen

With DucoWall Solid louvre blades with small punching slots (P1), the perforated louvre blades act as an insect screen. With all other types (Solid P2, Classic, Acoustic and Screening),

optional 2.3 x 2.3 mm or 6 x 6 mm stainless-steel mesh can he selected







Stainless-steel mesh



DucoWall Solid W 30Z P1

#### → Ventilation capacity

Each louvre wall is tested extensively and optimised by DUCO's R&D department.

The 'High Performance' HP louvre blades in the DucoWall Classic range ensure excellent airflow thanks to low resistance.

| Airflow<br>performance<br>class | Ce or Cd    |
|---------------------------------|-------------|
| 1                               | ≥ 0,4       |
| 2                               | 0,3 - 0,399 |
| 3                               | 0,2 - 0,299 |
| 4                               | ≤ 0,199     |

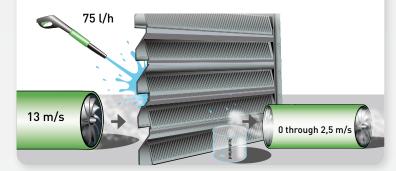


High Performance

DucoWall Classic W 130HP

### → Penetration security

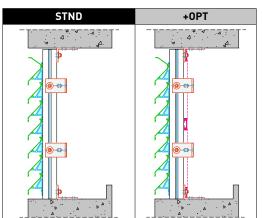
DucoWall Classic louvre walls with **V-louvre blades** are penetration proof.




All DucoWall louvre wall systems have been tested by **BSRIA** in accordance with the water tightness tests developed in collaboration with HEVAC. The test

simulates 75 litres per hour rainfall at a wind speed of 13 metres per second. A class is assigned to the louvre wall on the basis of the air velocity in the louvre wall and the % of watertightness.

| Class A        | 100 - 99 %  |
|----------------|-------------|
| Class <b>B</b> | 98,5 - 95 % |
| Class C        | 94,9 - 80 % |
| Class <b>D</b> | < 80 %      |


EN13030



### ightarrow Sound absorption

**DucoWall Acoustic** louvre blades are fitted on the inside with noncombustible mineral wool and are ideally suited for applications with high levels of noise intrusion.

#### → STND and +OPT version



The technical values of our grilles have been tested in two ways:

#### STND = 'Standard'

This is the standard version.

#### +OPT = '+Options'

This is an optional version where the louvre wall has been tested incl. insect screen.

The **+OPT** version will often bring better results in terms of water resistance. See each product page for all values per grille type.

### **PRODUCTOVERVIEW**

#### Ventilation capacity = at intake = at exhaust

The longer the bar. the greater the airflow. STND and +OPT version: see page 5

#### **Maximum** span

between two mullions at 800 Pa and pressure coefficient: 1.2

#### **DUCOWALL SOLID**

Sturdy aluminium blades that connect to one another ensure vandal-proof louvre walls with a minimal support structure. **Very quick assembly** thanks to DUCO's patented 'Direct-Clip' system.

OucoWall Solid W 30Z









see p. 8

#### **DUCOWALL SCREENING**

Aluminium louvre wall system that is eminently suitable for projects where the wall acts primarily as **screening**. These systems guarantee very quick assembly.

**DucoWall Screening 35** 

**DucoWall Screening 70** 





← 1200 mm →

← 1350 mm →

← 1250 mm →

see p. 12

see p. 13

see p. 14

see p. 24

#### **DUCOWALL CLASSIC**

© DucoWall Classic W 20Z

Aluminium louvre wall system with louvre blade holders. Quick assembly with DUCO's 'Turn-Click' system. These louvre blade holders can be fitted on the mullion separately, enabling a perfect finish to be achieved.

STND

+0PT STND © DucoWall Classic W 20V  $\rightarrow$ 1850 mm +OPT STND DucoWall Classic W 35V  $\leftarrow$  $\rightarrow$ 2650 mm see p. 16 +0PT STND DucoWall Classic W 50Z/30°  $\leftarrow$  $\rightarrow$ 2050 mm see p. 17 +OPT STND © DucoWall Classic W 50Z 1550 mm → see p. 18 +0PT OucoWall Classic W 50/75Z  $\rightarrow$ 1550 mm see p. 19 +0PT STND  $\rightarrow$ © DucoWall Classic W 70V 2150 mm see p. 20 +0PT STND OucoWall Classic W 45HP ← 1330 mm → see p. 21 +OPT STND © DucoWall Classic W 50HP ←1100 mm→ see p. 22 +0PT STND  $\rightarrow$ OucoWall Classic W 130HP 2300 mm see p. 23 +OPT n/a

STND

+0PT STND

+OPT

DucoWall Classic W 80HP

DucoWall Classic W 60C

<sup>\*</sup> Impact and fall protection only applies in combination with Metal Clips.

#### Ventilation capacity = at intake

= at exhaust The longer the bar, the greater the airflow. STND and +OPT version: see page 5

#### **Maximum** span

between two mullions at 800 Pa and pressure coefficient: 1.2

#### **DUCOWALL ACOUSTIC**

Aluminium louvre wall system with louvre blades that are fitted with sound-absorbing, non-combustible mineral wool. Quick assembly with DUCO's patented 'Turn-Click' system.

OucoWall Acoustic W 75Z

STND +OPT STND

see p. 28

OucoWall Acoustic W 75L

+OPT



1700 mm

OucoWall Acoustic W 150



 $\rightarrow$ 2150 mm

2150 mm

 $\rightarrow$ 

DucoWall Acoustic W 300

#### **DUCODOOR LOUVRE DOORS**

Ventilated louvre doors or false louvre doors, optionally either integrated or not into the louvre wall.

Duco Door Wall

DucoDoor Louvre





Ventilated louvre door or false louvre door in the louvre wall system with specific requirements for intrusion resistance and/or draught-proofing

Louvre door in louvre wall system without specific requirements

see p. 31 see p. 32

DucoDoor Grille



Free-standing ventilated louvre door or false louvre door, either with or without specific requirements for intrusion resistance and/or draught-proofing

see p. 33

#### **ROOF TURRETS**

Kits and components to build roof cowls with DucoWall louvre blades.

**Duco Roof Turret Solid 30Z** 





see p. 36

Legend



Vandal-proof









**Burglary-resistant** The grille is (optionally) burglary-resistant up to class 2



Penetration safe The grille is penetration-proof





Water resistant The grille is good to very good water resistant



Impact protection





Sound absorption Can be used in projects w heavy (+) noise exposure ed in projects with **light** or



Fall-through protection



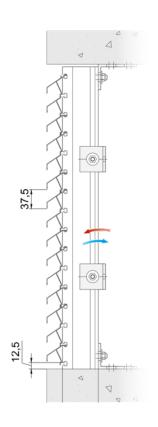
**High Performance** 



The louvre blades are optimised for

#### LOUVRE GRILLES




Louvre blades with (a) are also available as wall and/or window louvre grilles (DucoGrille). See our 'Louvre grilles' brochure for more information.



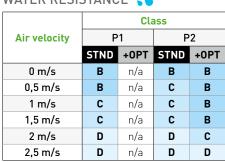


DucoWall **Solid W 30Z** 

DucoWall Solid 30Z louvre blades offer high ventilation capacity with relatively small louvre blades. The 'stackable' louvre blades form a single whole, making them **extra strong** and **vandal-proof**. The strong louvre blade system requires a minimal support structure. DUCO's 'Direct Clip' system ensures **very quick assembly**.



#### **DIMENSIONS AND MULLIONS**


| Type of mullion                    | 40/21 (Double) | 40/70 Double | 40/100 Double |  |  |
|------------------------------------|----------------|--------------|---------------|--|--|
| Spacing of the louvre (pitch)      |                | 37,5 mm      |               |  |  |
| Louvre depth                       | 30 mm          |              |               |  |  |
| Recess depth                       | 52 mm          | 102 mm       | 132 mm        |  |  |
| Maximum span<br>between 2 mullions | <b>←</b>       | 1970 mm      | $\rightarrow$ |  |  |

#### **VENTILATION VALUES**

| Feature               |         | P     | 1    | P2    |       |  |
|-----------------------|---------|-------|------|-------|-------|--|
| reature               |         | STND  | +0PT | STND  | +0PT  |  |
| Visual free area      |         | 60 %  | n/a  | 86 %  | 86 %  |  |
| Physical free area    |         | 34 %  | n/a  | 48 %  | 48 %  |  |
| Ce (higher is better) |         | 0,216 | n/a  | 0,234 | 0,232 |  |
| Cd (higher is better) |         | 0,242 | n/a  | 0,271 | 0,266 |  |
| K-FACTOR              | INTAKE  | 21,43 | n/a  | 18,26 | 18,58 |  |
| (lower is better)     | EXHAUST | 17,08 | n/a  | 13,62 | 14,13 |  |

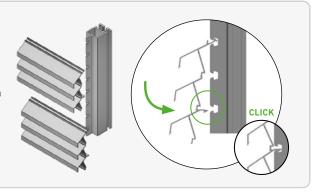
STND and +OPT version: see page 5

#### WATER RESISTANCE 💢



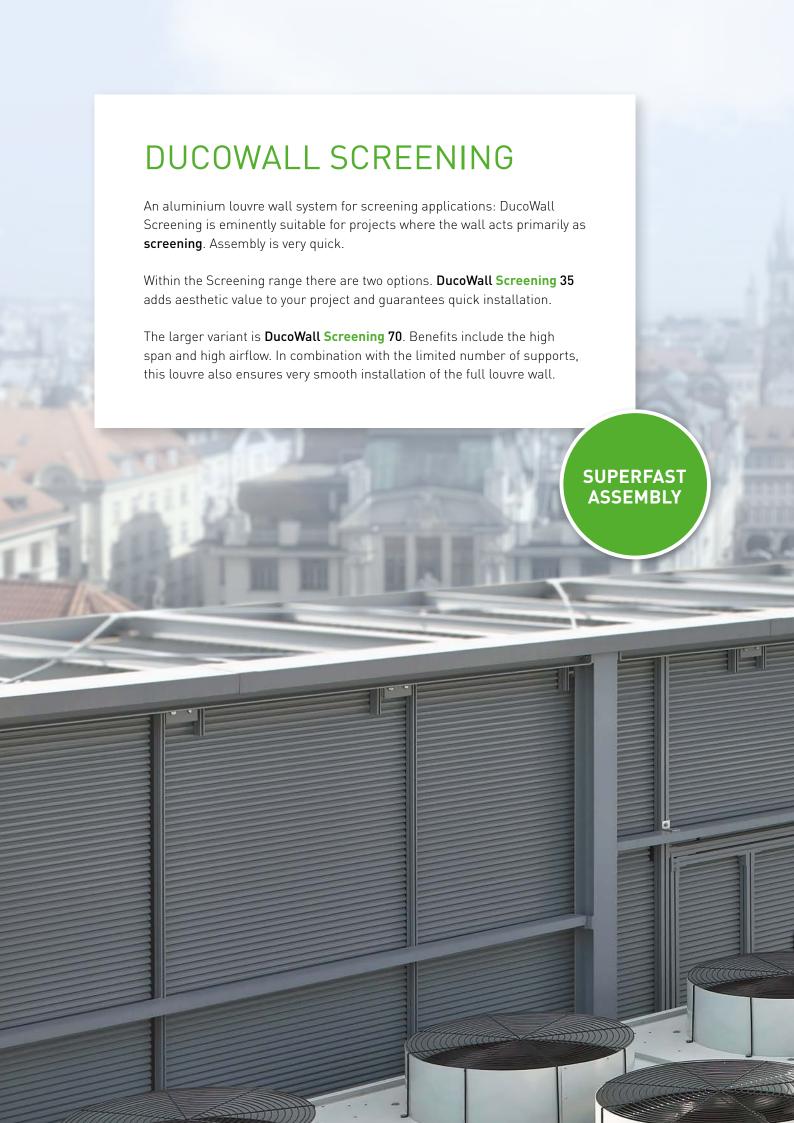
#### **Punching**

DucoWall Solid W 30Z is available with louvre blades with **small punching (P1)**, **large punching (P2)** or without punching as **false louvres (NP)**. Combining the two in the same project ensures a uniform appearance.


#### **INSECT SCREEN**

| Punching     | P1                                           | P2                                                                                                                  | NP                    |
|--------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|
| Resistant to | Perforated louvre blades<br>as insect screen | Perforated louvre blades as bird screen  OPTIONS Stainless steel mesh, 2.3 x 2.3 mm  Stainless steel mesh, 6 x 6 mm | 100 %<br>false louvre |

#### SUPERFAST ASSEMBLY

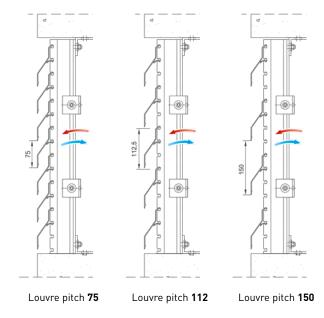

DucoWall Solid W 30Z is made up of **triple louvre blades** that are clicked together one above the other onto the mullion using DUCO's 'Direct Clip' system. This ensures a very sturdy unit and extremely quick assembly.

The final row can be finished with a single louvre blade.














## DucoWall **Screening 35**

DucoWall Screening 35 is a louvre wall system that can be clicked directly onto the mullion. This results in **quick and smooth assembly**. There are three different louvre blades to choose from. In this way, the louvre wall can be adapted to the wishes and needs of any project. The system is eminently suitable for projects where the louvre wall acts primarily as **screening**.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 40/21 (Double)          | 40/70 Double | 40/100 Double |  |  |  |
|------------------------------------|-------------------------|--------------|---------------|--|--|--|
| Spacing of the louvre (pitch)      | 75 mm - 112 mm - 150 mm |              |               |  |  |  |
| Louvre depth                       | 43 mm                   |              |               |  |  |  |
| Recess depth                       | 57 mm 107 mm 137 mm     |              |               |  |  |  |
| Maximum span<br>between 2 mullions | <b>←</b>                | 2000 mm      | $\rightarrow$ |  |  |  |

#### **VENTILATION VALUES**

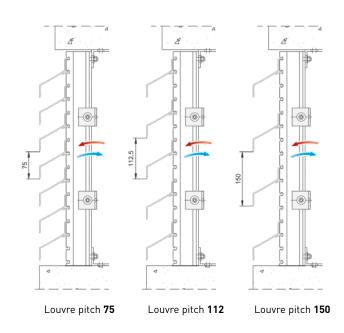
|                       | Fosturo           |       | 75    |       | 112   |       | 150   |  |
|-----------------------|-------------------|-------|-------|-------|-------|-------|-------|--|
| Feature               |                   | STND  | +0PT  | STND  | +0PT  | STND  | +OPT  |  |
| Visual free area      |                   | 52 %  | 52 %  | 68 %  | 68 %  | 76 %  | 76 %  |  |
| Physical free are     | hysical free area |       | 29 %  | 27 %  | 27 %  | 35 %  | 35 %  |  |
| Ce (higher is better) |                   | 0,128 | 0,128 | 0,122 | 0,121 | 0,206 | 0,204 |  |
| Cd (higher is better) |                   | 0,162 | 0,161 | 0,174 | 0,175 | 0,224 | 0,222 |  |
| K-FACTOR              | INTAKE            | 61,04 | 61,04 | 67,19 | 68,30 | 23,56 | 24,03 |  |
| (lower is better)     | EXHAUST           | 38,10 | 38,58 | 33,03 | 32,65 | 19,93 | 20,29 |  |

#### WATER RESISTANCE

| WATER RESISTANCE |                 |                                |                                                    |       |                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------|-----------------|--------------------------------|----------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  |                 | Cla                            | ass                                                |       |                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 7                | 5               | 1′                             | 12                                                 | 150   |                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| STND             | +OPT            | STND +0PT                      |                                                    | STND  | +OPT                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Α                | Α               | В                              | В                                                  | С     | С                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| В                | В               | С                              | В                                                  | С     | С                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| В                | В               | С                              | С                                                  | D     | D                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| D                | D               | D                              | D                                                  | D     | D                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| D                | D               | D                              | D                                                  | D     | D                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| D                | D               | D                              | D                                                  | D     | D                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                  | 77 STND A B C D | 75 STND +0PT A A B B B B D D D | 75 11  STND +0PT STND  A A B B B C B B C D D D D D | Class | Class           75         112         18           STND         +0PT         STND         +0PT         STND           A         A         B         B         C           B         B         C         B         C           B         B         C         C         D           D         D         D         D         D           D         D         D         D         D |  |  |

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm




 <sup>→</sup> Overview of mullions: see page 43
 → Full specifications: see page 44



## DucoWall **Screening 70**

DucoWall Screening 70 is a louvre wall system with a very **high span** and **high airflow**. The louvre blades are fastened directly onto the mullion (Direct Clip). In combination with the limited number of supports, this ensures a **very fast installation** of the louvre wall. DucoWall Screening 70 is available with different louvre pitches (75 / 112 / 150 mm).



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 40/21 (Double)          | 40/70 Double | 40/100 Double |  |  |  |
|------------------------------------|-------------------------|--------------|---------------|--|--|--|
| Spacing of the louvre (pitch)      | 75 mm - 112 mm - 150 mm |              |               |  |  |  |
| Louvre depth                       | 82 mm                   |              |               |  |  |  |
| Recess depth                       | 94,5 mm                 | 145 mm       | 175 mm        |  |  |  |
| Maximum span<br>between 2 mullions | <b>←</b>                | 2400 mm      | $\rightarrow$ |  |  |  |

#### **VENTILATION VALUES**

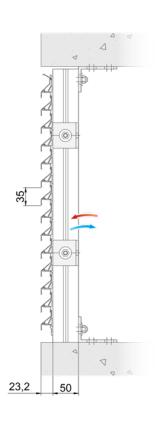
|                       |                    | 75 112 |       | 10    | 150   |       |       |
|-----------------------|--------------------|--------|-------|-------|-------|-------|-------|
| Feature               |                    | /      | /5    |       | 112   |       | DU    |
| i catul c             |                    | STND   | +0PT  | STND  | +0PT  | STND  | +0PT  |
| Visual free area      |                    | 53 %   | 53 %  | 68 %  | 68 %  | 77 %  | 77 %  |
| Physical free are     | Physical free area |        | 37 %  | 59 %  | 59 %  | 55 %  | 55 %  |
| Ce (higher is better) |                    | 0,182  | 0,181 | 0,212 | 0,212 | 0,270 | 0,264 |
| Cd (higher is better) |                    | 0,200  | 0,197 | 0,270 | 0,266 | 0,313 | 0,308 |
| K-FACTOR              | INTAKE             | 30,19  | 30,52 | 22,25 | 22,25 | 13,72 | 14,35 |
| (lower is better)     | EXHAUST            | 25,00  | 25,77 | 13,72 | 14,13 | 10,21 | 10,54 |

#### WATER RESISTANCE 🟅

| WATER RESISTANCE  |      |                     |     |      |      |   |  |
|-------------------|------|---------------------|-----|------|------|---|--|
|                   |      |                     | Cla | ass  |      |   |  |
| Air veloc-<br>ity | 7    | 75 112              |     | 12   | 150  |   |  |
| icy               | STND | STND +OPT STND +OPT |     | STND | +0PT |   |  |
| 0 m/s             | В    | Α                   | В   | В    | С    | С |  |
| 0,5 m/s           | С    | В                   | С   | В    | D    | С |  |
| 1 m/s             | С    | С                   | С   | С    | D    | D |  |
| 1,5 m/s           | С    | С                   | С   | С    | D    | D |  |
| 2 m/s             | D    | D                   | D   | С    | D    | D |  |
| 2,5 m/s           | D    | D                   | D   | D    | D    | D |  |

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm




 <sup>→</sup> Overview of mullions: see page 43
 → Full specifications: see page 44



## DucoWall Classic W 20Z

DucoWall Classic W 20Z is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The "Z"-shaped louvre blade produces a sleek design.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12                    | 21/50 Multi | 50/50 | 50/125 |
|------------------------------------|--------------------------|-------------|-------|--------|
| Spacing of the louvre (pitch)      | 35 mm                    |             |       |        |
| Louvre depth                       | 23 mm                    |             |       |        |
| Recess depth                       | 35 mm 73 mm 73 mm 148 mm |             |       |        |
| Maximum span<br>between 2 mullions | ← 1200 mm →              |             |       |        |

#### **VENTILATION VALUES**

| Feature               |         | STND  | +0PT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 63 %  | 63 %  |
| Physical free area    |         | 47 %  | 47 %  |
| Ce (higher is better) |         | 0,210 | 0,203 |
| Cd (higher is better) |         | 0,181 | 0,174 |
| K-FACTOR              | INTAKE  | 22,68 | 24,27 |
| (lower is better)     | EXHAUST | 30,52 | 33,03 |

#### WATER RESISTANCE 😽

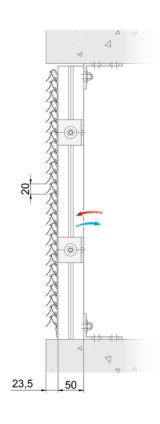
| WATER RESISTANCE |      |      |  |  |
|------------------|------|------|--|--|
| Air velocity     | Cla  | ass  |  |  |
| All velocity     | STND | +OPT |  |  |
| 0 m/s            | С    | В    |  |  |
| 0,5 m/s          | С    | В    |  |  |
| 1 m/s            | D    | С    |  |  |
| 1,5 m/s          | D    | D    |  |  |
| 2 m/s            | D    | D    |  |  |
| 2,5 m/s          | D    | D    |  |  |

STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm










Good water resistance

Penetration safe

## DucoWall Classic W 20V

DucoWall Classic W 20V is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The unique "V"-shaped louvre blade ensures better water resistance and makes the louvre wall 'penetration-proof' and difficult to see through from the outside.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12                    | 21/50 Multi | 50/50            | 50/125 |
|------------------------------------|--------------------------|-------------|------------------|--------|
| Spacing of the louvre (pitch)      | 20 mm                    |             |                  |        |
| Louvre depth                       | 23 mm                    |             |                  |        |
| Recess depth                       | 35 mm 73 mm 73 mm 148 mm |             |                  |        |
| Maximum span<br>between 2 mullions |                          | ← 1850      | mm $\rightarrow$ |        |

#### **VENTILATION VALUES**

| Feature               |         | STND  | +OPT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 95 %  | 95 %  |
| Physical free area    |         | 37 %  | 37 %  |
| Ce (higher is better) |         | 0,155 | 0,149 |
| Cd (higher is better) |         | 0,155 | 0,149 |
| K-FACTOR              | INTAKE  | 41,62 | 45,04 |
| (lower is better)     | EXHAUST | 41,62 | 45,04 |

#### WATER RESISTANCE 🟅

| Air velocity | Cla  | ass  |  |  |
|--------------|------|------|--|--|
| All velocity | STND | +0PT |  |  |
| 0 m/s        | Α    | Α    |  |  |
| 0,5 m/s      | В    | Α    |  |  |
| 1 m/s        | С    | В    |  |  |
| 1,5 m/s      | D    | В    |  |  |
| 2 m/s        | D    | С    |  |  |
| 2,5 m/s      | D    | D    |  |  |

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm









Good water resistance

Penetration safe

## DucoWall Classic W 35V

DucoWall Classic W 35V is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The unique "V"-shaped louvre blade ensures better water resistance and makes the louvre wall 'penetration-proof' and difficult to see through from the outside.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12        | 21/50 Multi | 50/50 | 50/125        |
|------------------------------------|--------------|-------------|-------|---------------|
| Spacing of the louvre (pitch)      | 35 mm        |             |       |               |
| Louvre depth                       | 38 mm        |             |       |               |
| Recess depth                       | 50 mm        | 88 mm       | 88 mm | 163 mm        |
| Maximum span<br>between 2 mullions | $\leftarrow$ | 2650        | mm    | $\rightarrow$ |

#### **VENTILATION VALUES**

| Feature               |         | STND  | +OPT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 59 %  | 59 %  |
| Physical free area    |         | 35 %  | 35 %  |
| Ce (higher is better) |         | 0,118 | 0,116 |
| Cd (higher is better) |         | 0,124 | 0,123 |
| K-FACTOR              | INTAKE  | 71,82 | 74,32 |
| (lower is better)     | EXHAUST | 65,04 | 66,10 |

#### WATER RESISTANCE 😯

|              |      | ass  |
|--------------|------|------|
| Air velocity | STND | +0PT |
| 0 m/s        | Α    | Α    |
| 0,5 m/s      | Α    | Α    |
| 1 m/s        | Α    | Α    |
| 1,5 m/s      | Α    | Α    |
| 2 m/s        | С    | В    |
| 2,5 m/s      | С    | С    |

 $\textbf{STND and +0PT version: see page 5} \qquad \text{Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm}$ 





### DucoWall Classic W 50Z/30°

DucoWall Classic W 50Z/30° is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The "Z"-shaped louvre blade produces a sleek design. The louvre wall is available with 65 or 75 mm spacing.

#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12       | 21/50<br>Multi | 50/50  | 50/125        |
|------------------------------------|-------------|----------------|--------|---------------|
| Spacing of the louvre (pitch)      | 65 or 75 mm |                |        |               |
| Louvre depth                       | 53 mm       |                |        |               |
| Recess depth                       | 65 mm       | 103 mm         | 103 mm | 178 mm        |
| Maximum span<br>between 2 mullions | <b>←</b>    | 2050           | mm     | $\rightarrow$ |

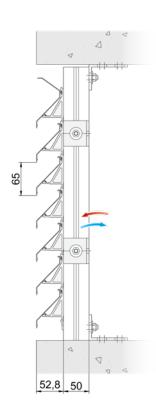
### 52,8 50 52,8 50 Louvre pitch 65 Louvre pitch 75

#### **VENTILATION VALUES**

| Feature               |         | 6     | 5                 | 75    |       |
|-----------------------|---------|-------|-------------------|-------|-------|
| reature               | reature |       | +0PT              | STND  | +0PT  |
| Visual free area      |         | 41 %  | 41 %              | 49 %  | 49 %  |
| Physical free area    |         | 40 %  | 40 % 40 % 46 % 40 |       | 46 %  |
| Ce (higher is better) |         | 0,262 | 0,253             | 0,312 | 0,310 |
| Cd (higher is better) |         | 0,308 | 0,302             | 0,339 | 0,336 |
| K-FACTOR              | INTAKE  | 14,57 | 15,62             | 10,27 | 10,41 |
| (lower is better)     | EXHAUST | 10,54 | 10,96             | 8,70  | 8,86  |

| WATER RESISTANCE 🕻 |                     |     |     |   |  |
|--------------------|---------------------|-----|-----|---|--|
|                    |                     | Cla | ass |   |  |
| Air velocity       | 6                   | 5   | 7   | 5 |  |
|                    | STND +OPT STND +OPT |     |     |   |  |
| 0 m/s              | В                   | В   |     |   |  |
| 0,5 m/s            | С                   | В   |     |   |  |
| 1 m/s              | С                   | В   | С   | С |  |
| 1,5 m/s            | C C C C             |     |     |   |  |
| 2 m/s              | D C D C             |     |     |   |  |
| 2,5 m/s            | D                   | С   | D   | D |  |

STND and +OPT version: see page 5


Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm





## DucoWall Classic W 50Z

DucoWall Classic W 50Z is a louvre wall system that can be placed against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The "Z"-shaped louvre blade produces a sleek design.



#### **DIMENSIONS AND MULLIONS**

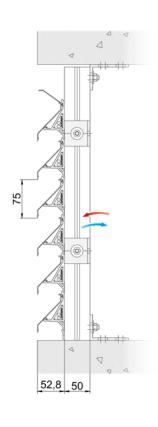
| Type of mullion                    | 50/12                      | 21/50 Multi | 50/50 | 50/125 |
|------------------------------------|----------------------------|-------------|-------|--------|
| Spacing of the louvre (pitch)      | 65 mm                      |             |       |        |
| Louvre depth                       | 53 mm                      |             |       |        |
| Recess depth                       | 65 mm 103 mm 103 mm 178 mm |             |       |        |
| Maximum span<br>between 2 mullions |                            | ← 1550      | mm →  |        |

#### **VENTILATION VALUES**

| Feature               |         | STND  | +OPT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 75 %  | 75 %  |
| Physical free area    |         | 52 %  | 52 %  |
| Ce (higher is better) |         | 0,205 | 0,207 |
| Cd (higher is better) |         | 0,278 | 0,266 |
| K-FACTOR              | INTAKE  | 23,80 | 23,34 |
| (lower is better)     | EXHAUST | 12,94 | 14,13 |

#### WATER RESISTANCE

| WATER RESISTANCE |       |      |  |
|------------------|-------|------|--|
| Air velocity     | Class |      |  |
| All velocity     | STND  | +0PT |  |
| 0 m/s            | В     | Α    |  |
| 0,5 m/s          | С     | В    |  |
| 1 m/s            | С     | В    |  |
| 1,5 m/s          | С     | С    |  |
| 2 m/s            | D     | С    |  |
| 2,5 m/s          | D     | D    |  |


STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm





## DucoWall Classic W 50/75Z

DucoWall Classic W 50/75Z is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The "Z"-shaped louvre blade produces a sleek design.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12       | 21/50 Multi | 50/50  | 50/125 |
|------------------------------------|-------------|-------------|--------|--------|
| Spacing of the louvre (pitch)      | 75 mm       |             |        |        |
| Louvre depth                       | 53 mm       |             |        |        |
| Recess depth                       | 65 mm       | 103 mm      | 103 mm | 178 mm |
| Maximum span<br>between 2 mullions | ← 1550 mm → |             |        |        |

#### **VENTILATION VALUES**

| Feature               |         | STND  | +OPT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 80 %  | 80 %  |
| Physical free area    |         | 54 %  | 54 %  |
| Ce (higher is better) |         | 0,219 | 0,219 |
| Cd (higher is better) |         | 0,297 | 0,288 |
| K-FACTOR              | INTAKE  | 20,85 | 20,85 |
| (lower is better)     | EXHAUST | 11,34 | 12,06 |

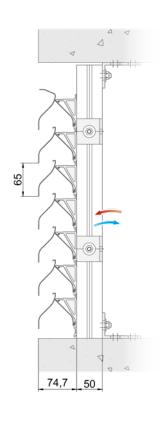
#### WATER RESISTANCE 😯

| WATER RESISTANCE |       |      |  |
|------------------|-------|------|--|
| Air velocity     | Class |      |  |
| All velocity     | STND  | +0PT |  |
| 0 m/s            | В     | Α    |  |
| 0,5 m/s          | С     | В    |  |
| 1 m/s            | С     | В    |  |
| 1,5 m/s          | D     | С    |  |
| 2 m/s            | D     | С    |  |
| 2,5 m/s          | D     | D    |  |

STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm










Good water resistance Penetration safe

### DucoWall **Classic W 70V**

DucoWall Classic W 70V is a louvre wall system that can be fitted against an existing structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The unique "V"-shaped louvre blade ensures better water resistance and makes the louvre wall 'penetration-proof' and difficult to see through from the outside.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12 | 21/50 Multi | 50/50  | 50/125 |
|------------------------------------|-------|-------------|--------|--------|
| Spacing of the louvre (pitch)      | 65 mm |             |        |        |
| Louvre depth                       | 75 mm |             |        |        |
| Recess depth                       | 87 mm | 125 mm      | 125 mm | 200 mm |
| Maximum span<br>between 2 mullions | •     | ← 2150      | mm -   | >      |

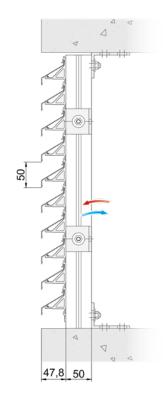
#### **VENTILATION VALUES**

| Feature               |         | STND  | +0PT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 65 %  | 65 %  |
| Physical free area    |         | 44 %  | 44 %  |
| Ce (higher is better) |         | 0,117 | 0,111 |
| Cd (higher is better) |         | 0,109 | 0,103 |
| K-FACTOR              | INTAKE  | 73,05 | 81,16 |
| (lower is better)     | EXHAUST | 84,17 | 94,26 |

#### WATER RESISTANCE

| Air velocity | Cla  | ass  |  |
|--------------|------|------|--|
| All velocity | STND | +OPT |  |
| 0 m/s        | В    | Α    |  |
| 0,5 m/s      | В    | В    |  |
| 1 m/s        | В    | В    |  |
| 1,5 m/s      | С    | С    |  |
| 2 m/s        | D    | D    |  |
| 2,5 m/s      | D    | D    |  |

STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm








### DucoWall Classic W 45HP

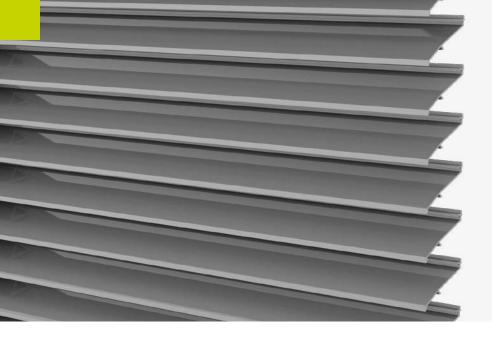
The DucoWall Classic W 45HP combines very good airflow with a "Z"-shaped louvre blade for a sleek design. This makes the DucoWall Classic W 45HP suitable for purge ventilation in projects with specific aesthetic requirements.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12                                                      | 21/50 Multi | 50/50 | 50/125 |
|------------------------------------|------------------------------------------------------------|-------------|-------|--------|
| Spacing of the louvre (pitch)      | 50 mm                                                      |             |       |        |
| Louvre depth                       | 48 mm                                                      |             |       |        |
| Recess depth                       | 60 mm                                                      | 98 mm       | 98 mm | 173 mm |
| Maximum span<br>between 2 mullions | ← 1330 mm →                                                |             |       |        |
| Louvre blade holders               | Plastic  Metal Clip  Reaction to fire A2-s1,d0 (EN13501-1) |             |       |        |

#### **VENTILATION VALUES**

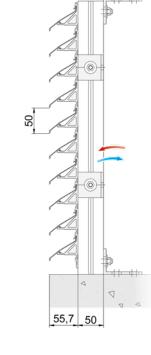

| Feature               |         | STND  | +0PT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 70 %  | 70 %  |
| Physical free area    |         | 60 %  | 60 %  |
| Ce (higher is better) |         | 0,295 | 0,295 |
| Cd (higher is better) |         | 0,385 | 0,369 |
| K-FACTOR              | INTAKE  | 11,49 | 11,49 |
| (lower is better)     | EXHAUST | 6,75  | 7,34  |

#### WATER RESISTANCE :

| WATER RESISTANCE |       |      |  |
|------------------|-------|------|--|
| Air volocity     | Class |      |  |
| Air velocity     | STND  | +OPT |  |
| 0 m/s            | С     | В    |  |
| 0,5 m/s          | С     | В    |  |
| 1 m/s            | С     | С    |  |
| 1,5 m/s          | С     | С    |  |
| 2 m/s            | D     | С    |  |
| 2,5 m/s          | D     | С    |  |

STND and +0PT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm










## DucoWall Classic W 50HP

The DucoWall Classic W 50HP has been specially developed for purge ventilation. The uniquely shaped 'High Performance' louvre blade with a low resistance factor ensures very good airflow. The DucoWall Classic W 50HP is a louvre wall system that can be fitted against an existing structure. Quick and easy assembly is possible because of the 'Turn-Click' system.



#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12                                                      | 21/50 Multi | 50/50 | 50/125 |  |
|------------------------------------|------------------------------------------------------------|-------------|-------|--------|--|
| Spacing of the louvre (pitch)      | 50 mm                                                      |             |       |        |  |
| Louvre depth                       | 56 mm                                                      |             |       |        |  |
| Recess depth                       | 68 mm                                                      | 181 mm      |       |        |  |
| Maximum span<br>between 2 mullions | ←1100 mm →                                                 |             |       |        |  |
| Louvre blade holders               | Plastic  Metal Clip  Reaction to fire A2-s1,d0 (EN13501-1) |             |       |        |  |

#### **VENTILATION VALUES**

| Feature               |         | STND  | +0PT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 88 %  | 88 %  |
| Physical free area    |         | 68 %  | 68 %  |
| Ce (higher is better) |         | 0,358 | 0,352 |
| Cd (higher is better) |         | 0,439 | 0,415 |
| K-FACTOR              | INTAKE  | 7,80  | 8,07  |
| (lower is better)     | EXHAUST | 5,19  | 5,81  |

#### WATER RESISTANCE

| WATER RESISTANCE |      |      |  |  |
|------------------|------|------|--|--|
| Airvolocity      | Cla  | ass  |  |  |
| Air velocity     | STND | +OPT |  |  |
| 0 m/s            | С    | В    |  |  |
| 0,5 m/s          | C B  |      |  |  |
| 1 m/s            | С    | В    |  |  |
| 1,5 m/s          | D    | С    |  |  |
| 2 m/s            | D    | С    |  |  |
| 2,5 m/s          | D    | С    |  |  |

 $\textbf{STND and +0PT version: see page 5} \qquad \text{Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm}$ 







High Performance

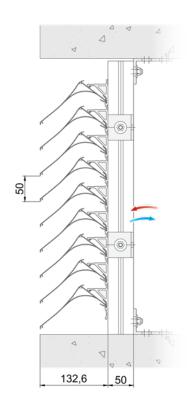




Fall-through protection



Impact protection




## DucoWall Classic W 130HP

The DucoWall Classic W 130HP has been specially developed for purge ventilation. The uniquely shaped 'High Performance' louvre blade with a low resistance factor provides a combination of very good airflow (high flow rates) together with excellent water resistance (class A). DucoWall Classic W 130HP is a louvre wall system that can be fitted against an existing structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The DucoWall Classic W 130HP meets class 5 of EN13049 for impact protection\* and BS6180 standard (class XI) for fall-through protection\*. See page 38-39 for all classes per country.



| Type of mullion                    | 50/12                                                      | 21/50 Multi | 50/50 | 50/125 |  |
|------------------------------------|------------------------------------------------------------|-------------|-------|--------|--|
| Spacing of the louvre (pitch)      | 50 mm                                                      |             |       |        |  |
| Louvre depth                       | 133 mm                                                     |             |       |        |  |
| Recess depth                       | 145 mm 183 mm 183 mm 258 i                                 |             |       |        |  |
| Maximum span<br>between 2 mullions | ← 2300 mm →                                                |             |       |        |  |
| Louvre blade holders               | Plastic  Metal Clip  Reaction to fire A2-s1,d0 (EN13501-1) |             |       |        |  |

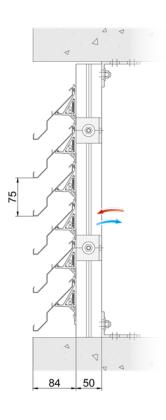


#### **VENTILATION VALUES**

| Feature               |         | STND  | +0PT |  |
|-----------------------|---------|-------|------|--|
| Visual free area      |         | 88 %  | n/a  |  |
| Physical free area    |         | 70 %  | n/a  |  |
| Ce (higher is better) |         | 0,327 | n/a  |  |
| Cd (higher is better) |         | 0,295 | n/a  |  |
| K-FACTOR              | INTAKE  | 9,35  | n/a  |  |
| (lower is better)     | EXHAUST | 11,49 | n/a  |  |

#### WATER RESISTANCE 😯

| WATER RESISTANCE |       |      |  |  |
|------------------|-------|------|--|--|
| Air velocity     | Class |      |  |  |
| All velocity     | STND  | +0PT |  |  |
| 0 m/s            | Α     | n/a  |  |  |
| 0,5 m/s          | Α     | n/a  |  |  |
| 1 m/s            | Α     | n/a  |  |  |
| 1,5 m/s          | Α     | n/a  |  |  |
| 2 m/s            | Α     | n/a  |  |  |
| 2,5 m/s          | С     | n/a  |  |  |


STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh  $2.3 \times 2.3$  mm or  $6 \times 6$  mm \* Impact and fall protection only applies in combination with Metal Clips.





## DucoWall Classic W 80HP

DucoWall Classic W 80HP is a louvre wall system that can be fitted against an existing structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The uniquely shaped 'High Performance' louvre blade provides **good water resistance** and **high airflow**.



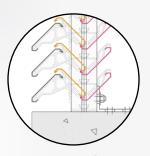
#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    | 50/12                      | 21/50 Multi | 50/50 | 50/125 |  |
|------------------------------------|----------------------------|-------------|-------|--------|--|
| Spacing of the louvre (pitch)      | 75 mm                      |             |       |        |  |
| Louvre depth                       | 84 mm                      |             |       |        |  |
| Recess depth                       | 96 mm 134 mm 134 mm 209 mm |             |       |        |  |
| Maximum span<br>between 2 mullions | ← 1350 mm →                |             |       |        |  |

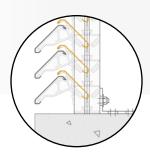
#### **VENTILATION VALUES**

| Feature               |         | STND  | +OPT  |
|-----------------------|---------|-------|-------|
| Visual free area      |         | 83 %  | 83 %  |
| Physical free area    |         | 49 %  | 49 %  |
| Ce (higher is better) |         | 0,299 | 0,284 |
| Cd (higher is better) |         | 0,271 | 0,256 |
| K-FACTOR              | INTAKE  | 11,19 | 12,40 |
| (lower is better)     | EXHAUST | 13,62 | 15,26 |

#### WATER RESISTANCE


| WATER RESISTANCE |      |      |  |  |
|------------------|------|------|--|--|
| Air velocity     | Cla  | ass  |  |  |
| All velocity     | STND | +0PT |  |  |
| 0 m/s            | Α    | Α    |  |  |
| 0,5 m/s          | ВВ   |      |  |  |
| 1 m/s            | В    | С    |  |  |
| 1,5 m/s          | С    | С    |  |  |
| 2 m/s            | С    | С    |  |  |
| 2,5 m/s          | D    | D    |  |  |

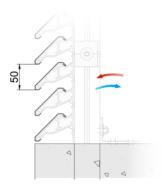
STND and +0PT version: see page 5 Insect p


Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm








W 60C/3 triple row of louvre blades



W 60C/2 double row of louvre blades

## DucoWall Classic W 60C

DucoWall Classic W 60C is a 'feature' louvre wall system, manufactured from 'cold-rolled' rather than extruded, aluminium louvre blades. The plastic louvre holders ensure a unique sturdiness. The three versions (single, double or triple) combine maximum airflow with very high water resistance, even in extreme weather conditions.



W 60C single row of louvre blades

#### **DIMENSIONS AND MULLIONS**

| Type of mullion                 |              | 50/12              | 21/50 Multi | 50/50  | 50/125 |
|---------------------------------|--------------|--------------------|-------------|--------|--------|
| Spacing of the lo               | uvre (pitch) | 50 mm              |             |        |        |
| Louvre depth                    |              | 77 mm              |             |        |        |
|                                 | 60C          | 89 mm   127 mm   x |             |        |        |
| Recess depth                    | 60C/2        |                    |             | 127 mm | 202 mm |
|                                 | 60C/3        |                    |             |        |        |
| Maximum span<br>between 2 mulli | ons          | ← 1250 mm →        |             |        |        |

#### **VENTILATION VALUES**

| Feature               |         | 60    | 60C   |       | 60C/2 |       | 60C/3 |  |
|-----------------------|---------|-------|-------|-------|-------|-------|-------|--|
|                       |         | STND  | +0PT  | STND  | +OPT  | STND  | +OPT  |  |
| Visual free area      |         | 84 %  | 84 %  | 84 %  | 84 %  | 84 %  | 84 %  |  |
| Physical free area    |         | 46 %  | 46 %  | 36 %  | 36 %  | 36 %  | 36 %  |  |
| Ce (higher is better) |         | 0,315 | 0,300 | 0,208 | 0,202 | 0,179 | 0,175 |  |
| Cd (higher is better) |         | 0,305 | 0,291 | 0,196 | 0,191 | 0,153 | 0,151 |  |
| K-FACTOR              | INTAKE  | 10,08 | 11,11 | 23,11 | 24,51 | 31,21 | 32,65 |  |
| (lower is better)     | EXHAUST | 10,75 | 11,81 | 26,03 | 27,41 | 42,72 | 43,86 |  |

#### WATER RESISTANCE

| WATER RESISTANCE  |       |                    |     |      |      |     |
|-------------------|-------|--------------------|-----|------|------|-----|
|                   | Class |                    |     |      |      |     |
| Air veloc-<br>ity | 60    | C                  | 600 | C/2  | 600  | C/3 |
| ity               | STND  | TND +OPT STND +OPT |     | STND | +0PT |     |
| 0 m/s             | В     | В                  | Α   | Α    | Α    | Α   |
| 0,5 m/s           | С     | С                  | Α   | Α    | Α    | Α   |
| 1 m/s             | С     | С                  | В   | В    | Α    | Α   |
| 1,5 m/s           | D     | D                  | С   | С    | Α    | Α   |
| 2 m/s             | D     | D                  | С   | С    | Α    | Α   |
| 2,5 m/s           | D     | D                  | С   | С    | С    | С   |

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm







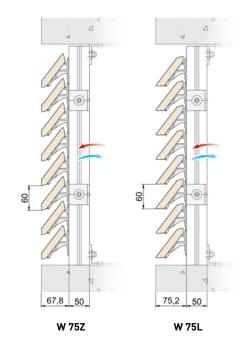








DucoWall


### Acoustic

### W 75Z & 75L

The DucoWall Acoustic W 75Z and W 75L are **sound-absorbing** louvre wall systems, manufactured from extruded aluminium sections profiles that feature sound absorbing, non-combustible mineral wool. The louvre blade can be clicked onto the plastic louvre holders **in both the** 

**Z-shape and the L-shape** for different aesthetic finishes. **DIMENSIONS AND MULLIONS** 

| Type of mullion               |     | 50/12       | 21/50<br>Multi | 50/50         | 50/125        |
|-------------------------------|-----|-------------|----------------|---------------|---------------|
| Spacing of the louvre (pitch) |     | 60 mm       |                |               |               |
| Louvre depth                  |     | 67 mm       |                |               |               |
| Dososs donth                  | 75Z | 79 mm       | 117 mm         | 117 mm        | 192 mm        |
| Recess depth                  | 75L | 87 mm       | 125 mm         | 125 mm        | 200 mm        |
| Maximum                       | 75Z | ← 1700 mm → |                | $\rightarrow$ |               |
| span between<br>2 mullions    | 75L | <b>←</b>    | 1650           | mm            | $\rightarrow$ |



#### **SOUND ABSORPTION**

| Attenuation value Rw (C;Ctr) |             |  |  |  |
|------------------------------|-------------|--|--|--|
| W 75Z                        | W 75L       |  |  |  |
| 6 (0;-1) dB                  | 6 (0;-2) dB |  |  |  |

#### **VENTILATION VALUES**

| Feature               |           | 7:    | 5Z    | 75L   |       |
|-----------------------|-----------|-------|-------|-------|-------|
|                       |           | STND  | +0PT  | STND  | +0PT  |
| Visual free area      |           | 76 %  | 76 %  | 95 %  | 95 %  |
| Physical free area    | free area |       | 28 %  | 28 %  | 28 %  |
| Ce (higher is better) |           | 0,196 | 0,196 | 0,212 | 0,209 |
| Cd (higher is better) |           | 0,183 | 0,182 | 0,258 | 0,254 |
| K-FACTOR              | INTAKE    | 26,03 | 26,03 | 22,25 | 22,89 |
| (lower is better)     | EXHAUST   | 29,86 | 30,19 | 15,02 | 15,50 |

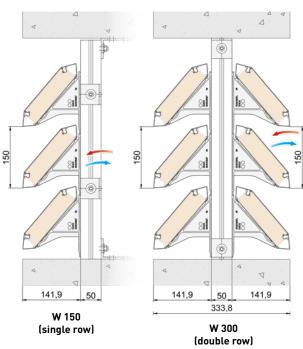
#### WATER RESISTANCE

| WATER RESISTANCE |           |       |      |      |  |  |
|------------------|-----------|-------|------|------|--|--|
|                  |           | Class |      |      |  |  |
| Air velocity     | 75        | 5Z    | 75L  |      |  |  |
|                  | STND +OPT |       | STND | +OPT |  |  |
| 0 m/s            | В         | В     | В    | В    |  |  |
| 0,5 m/s          | В         | В     | В    | В    |  |  |
| 1 m/s            | С         | С     | С    | С    |  |  |
| 1,5 m/s          | С         | С     | D    | D    |  |  |
| 2 m/s            | D D D D   |       |      | D    |  |  |
| 2,5 m/s          | D         | D     | D    | D    |  |  |

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm






# DucoWall Acoustic W 150 & 300

The DucoWall Acoustic W 150 is a sound absorbing louvre wall system, manufactured from extruded aluminium sections featuring sound-absorbing, non-combustible mineral wool, suitable for **additional acoustic damping**. With the DucoWall Acoustic W 300, two 150 louvre blades are fitted next to each other for optimum sound absorption.

#### **DIMENSIONS AND MULLIONS**

| Type of mullion                    |     | 50/12    | 21/50<br>Multi | 50/50 | 50/125        |
|------------------------------------|-----|----------|----------------|-------|---------------|
| Spacing of the louvre (pitch)      |     | 150 mm   |                |       |               |
| Louvre depth                       |     | 142 mm   |                |       |               |
| Dancer doub                        | 150 | 154      | 192            | 192   | 267 mm        |
| Recess depth 300                   |     | mm       | mm             | mm    | ×             |
| Maximum span<br>between 2 mullions |     | <b>←</b> | 2150           | mm    | $\rightarrow$ |



#### SOUND ABSORPTION

| Attenuation value Rw (C;Ctr) |  |  |  |
|------------------------------|--|--|--|
| W 150 W 300                  |  |  |  |
| 11 (-1;-2) dB 17 (-1;-3) dB  |  |  |  |

#### **VENTILATION VALUES**

| VENTILATION VALUES    |         |       |       |       |       |
|-----------------------|---------|-------|-------|-------|-------|
| Feature               |         | 15    | 50    | 300   |       |
|                       |         | STND  | +0PT  | STND  | +0PT  |
| Visual free area      |         | 74 %  | 74 %  | 74 %  | 74 %  |
| Physical free area    |         | 35 %  | 35 %  | 35 %  | 35 %  |
| Ce (higher is better) |         | 0,301 | 0,295 | 0,272 | 0,250 |
| Cd (higher is better) |         | 0,302 | 0,296 | 0,272 | 0,250 |
| K-FACTOR              | INTAKE  | 11,04 | 11,49 | 13,52 | 16,00 |
| (lower is better)     | EXHAUST | 10,96 | 11,41 | 13,52 | 16,00 |

#### WATER RESISTANCE

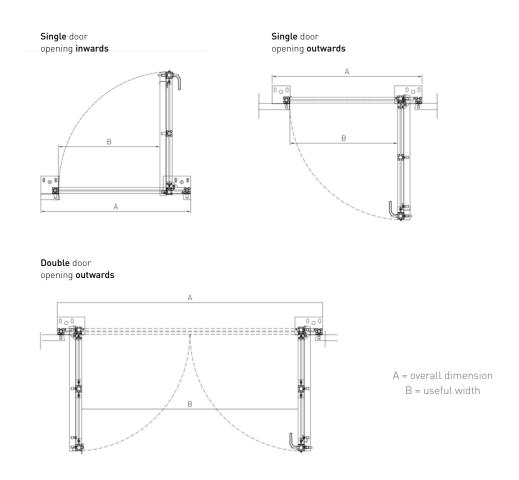
|              | Class     |    |      |      |  |
|--------------|-----------|----|------|------|--|
| Air velocity | 15        | 50 | 300  |      |  |
|              | STND +OPT |    | STND | +0PT |  |
| 0 m/s        | В         | В  | Α    | Α    |  |
| 0,5 m/s      | С         | С  | В    | В    |  |
| 1 m/s        | С         | С  | В    | В    |  |
| 1,5 m/s      | С         | С  | С    | С    |  |
| 2 m/s        | D         | D  | С    | С    |  |
| 2,5 m/s      | D         | D  | D    | D    |  |

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

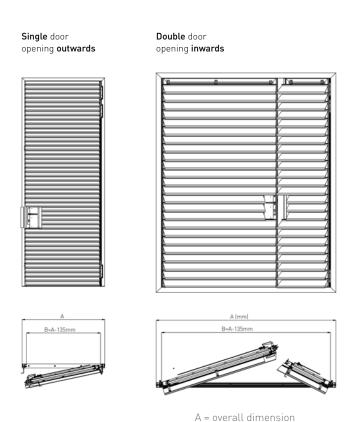


### DUCO LOUVRE DOORS


The louvre door range enables you to choose between the **DucoDoor Wall**, **DucoDoor Louvre** and **DucoDoor Grille** depending on the aesthetic, technical and legal requirements of the building. DUCO's louvre doors are suitable for use in (technical) rooms – whether or not at ground level, in car parks, etc. either **ventilating** or as (draught-proof) **false louvre doors**. All of our doors will guarantee a **sleek and uniform look**.

| Туре                      |                                                                                   |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |  |  |
|---------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                           | <b>DucoDoor Wall</b><br>see p. 31                                                 | DucoDoor Louvre<br>see p. 32                                                                                                                                                                                                                                                                     | <b>DucoDoor Grille</b><br>see p. 33                                                                                                                     |  |  |
| Application               | Louvre door in louvre wall system without specific requirements.                  | Ventilated louvre door or false<br>louvre door in the louvre wall<br>system with specific requirements<br>for burglary resistance and/or<br>draught-proofing.                                                                                                                                    | Free-standing ventilated louvre door or false louvre door either with or without specific requirements for burglary resistance and/or draught-proofing. |  |  |
| Vandal-proof              | Subject to Solid 30Z louvre blades                                                | Subject to Solid 30Z louvre blades                                                                                                                                                                                                                                                               | ✓                                                                                                                                                       |  |  |
| Burglary-resistant RC2    | ×                                                                                 | RC2 possible with NP or P1 internal louvre blades                                                                                                                                                                                                                                                | RC2 possible with NP or P1 blades                                                                                                                       |  |  |
| Draught-proof             | x                                                                                 | Possible subject to NP louvre blades                                                                                                                                                                                                                                                             | Possible subject to NP louvre blades                                                                                                                    |  |  |
| Louvre blades             | Complete DucoWall range possible                                                  | Complete DucoWall range available<br>as surface-mounted blades,<br>combined with Solid 30Z internal<br>blades as an option                                                                                                                                                                       | Solid 30Z<br>NP, P1 or P2<br>louvre blades                                                                                                              |  |  |
| Opening angle             |                                                                                   | <u>√180°</u>                                                                                                                                                                                                                                                                                     | <u>√180°</u>                                                                                                                                            |  |  |
| Available versions        | Single/double door   opening inwards/outwards   left/right-hand opening available |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |  |  |
| Maximum usable dimensions | Single door: W 1500 x H 3000 mm   Double door: W 3000 x H 3000 mm                 |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |  |  |
| Door furniture            | combinations available on request. Pa                                             | Comes with a lever handle on the inside of the door and a T-handle on the outside as standard. Other combinations available on request. Panic lock available on doors that act as an emergency exit (only for doors less than 2.2 m high, outward opening and not on intrusion-resistant doors). |                                                                                                                                                         |  |  |




The DucoDoor Wall is a **pivot door** that can be easily constructed using the same louvre blades and sections as your chosen louvre wall.

Thanks to a wide range of Solid, Classic and Screening louvre blades, the DucoDoor Wall integrates seamlessly and **invisibly into a full louvre wall**. This guarantees a sleek and **uniform façade**.





With the DucoDoor Louvre, DUCO has developed an **intrusion-resistant louvre door** that has been extensively tested by SKG in accordance with European standards (EN 1627:2011 & NEN 5096+C2:2011) and has been certified as **resistance class RC2**. The DucoDoor Louvre can also be made **draughtproof**. The special hinges fitted on the side create a **large usable width** and enable the door to be opened **by 180°**. This type of louvre door can be easily concealed in a louvre wall as it can draw on the **complete range** of Solid, Classic and Screening louvre blades.



B = useful width





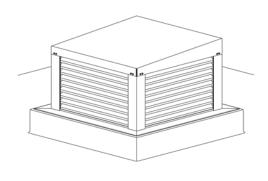
As a **free-standing entrance door**, the DucoDoor Grille is eminently suitable for non-louvre walls. Thanks to the fact that the **Solid blades built in as standard** (type 30Z) can be slotted in three different ways, (P1, P2 or NP), the façade can be given an aesthetic and expressive character. The DucoDoor Grille also scores high on **burglary resistance**. The Solid blades make every version **vandal-proof**. What is more, this louvre door has been tested by SKG in accordance with European standards (EN 1627:2011 & NEN 5096+C2:2011) and an **RC2-certified version** is available. In addition, the DucoDoor Grille can be made completely **draught-proof**. The special hinges fitted on the side create a **large usable width** and enable the door to be opened **by 180°**.





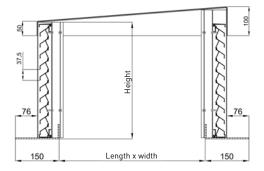
A = overall dimension B = useful width











### Duco Roof Turret Solid 30Z

Duco Roof Turret Solid 30Z is an aluminium roof cowl. It provides aesthetic concealment of air vents. The roof cowl also ensures adequate **purge ventilation** of the screened areas and can be used in almost **any project**. The perforated Solid 30Z louvre blades are the ideal solution for both insect resistance and ventilation capacity. Thanks to large punching (P2), this **small roof cowl** achieves **high ventilation values**. The roof cowls are **made to measure** and provided with a sill at the bottom and a cover plate on top.



#### **DIMENSIONS**

| Spacing of the louvre (pitch) | 37,5 mm                                    |
|-------------------------------|--------------------------------------------|
| Roof cowl length              | Min. 200 mm - Max. 2630 mm (to be coupled) |
| Roof cowl width               | Min. 200 mm - Max. 1180 mm (to be coupled) |
| Roof cowl height              | Min. 255 mm - max. 1600 mm                 |



#### **VENTILATION VALUES**

| Feature               |         | P1    | P2    | P2 + ECG |
|-----------------------|---------|-------|-------|----------|
|                       |         | STND  | STND  | STND     |
| Visual free area      |         | 60 %  | 86 %  | 86 %     |
| Physical free area    |         | 34 %  | 48 %  | 48 %     |
| Ce (higher is better) |         | 0,243 | 0,258 | 0,179    |
| Cd (higher is better) |         | 0,234 | 0,253 | 0,202    |
| K-FACTOR              | INTAKE  | 16,94 | 15,02 | 31,21    |
| (lower is better)     | EXHAUST | 18,26 | 15,62 | 24,51    |

STND and +OPT version: see page 5

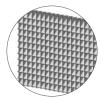
\*ECG = Eggcrate grille (see page 37)

#### WATER RESISTANCE

|              | Class |      |          |  |  |
|--------------|-------|------|----------|--|--|
| Air velocity | P1    | P2   | P2 + ECG |  |  |
|              | STND  | STND | STND     |  |  |
| 0 m/s        | В     | С    | A        |  |  |
| 0,5 m/s      | С     | С    | A        |  |  |
| 1 m/s        | С     | С    | Α        |  |  |
| 1,5 m/s      | D     | D    | В        |  |  |
| 2 m/s        | D     | D    | С        |  |  |
| 2,5 m/s      | D     | D    | С        |  |  |

### Sill profile

The **Duco Roof Turret Solid 30Z** also exists as a variant with sill profile. The sill profile ensures **better water drainage**. The sill profile allows the roof covering to be completely concealed. This provides an **aesthetic finish**. It also offers more placement options.

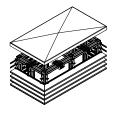



#### **OPTIONS DUCO ROOF TURRET SOLID 30Z**

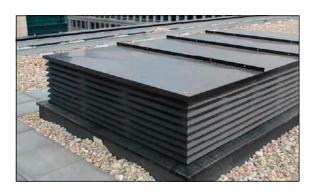
#### DucoGrille Close 105

The DucoGrille Close 105 can, as an option, be integrated in the roof turret, thereby ensuring a controlled air supply or extraction. More info on the DucoGrille Close 105 can be found in our "Louvre Grilles" brochure.






#### Eggcrate grille


The Duco Roof Turret Solid 30Z is available with an optional Eggcrate grille, which provides even better water resistance (combination with the P2 louvre blades).

#### ROOF COWLS WITH OTHER LOUVRE BLADES

In addition to the Duco Roof Turret Solid 30Z, DUCO also offers a system in which almost all types of louvre blade from the DucoWall range can be used. These roof cowls are made up of profiles from the DucoWall range. The upper panel and finishing thresholds are included. They are available as separate parts, semi-assembled kits or fully assembled kits. Do you need more info? Contact your DUCO dealer.







# IMPACT AND FALL-THROUGH PROTECTION

Façade elements are increasingly expected to meet 'impact protection' and 'fall-through protection' requirements:



## **Impact protection**

The resistance of a material to which an intense force or shock is exerted for a short period of time.

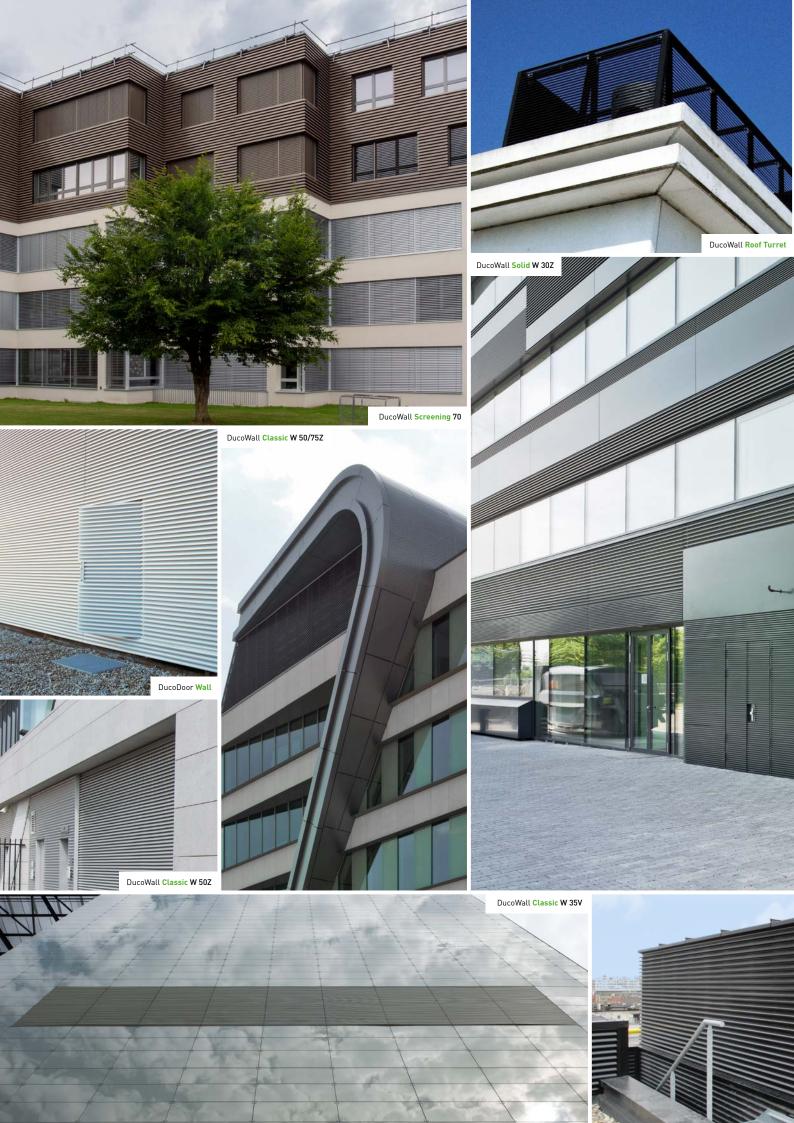


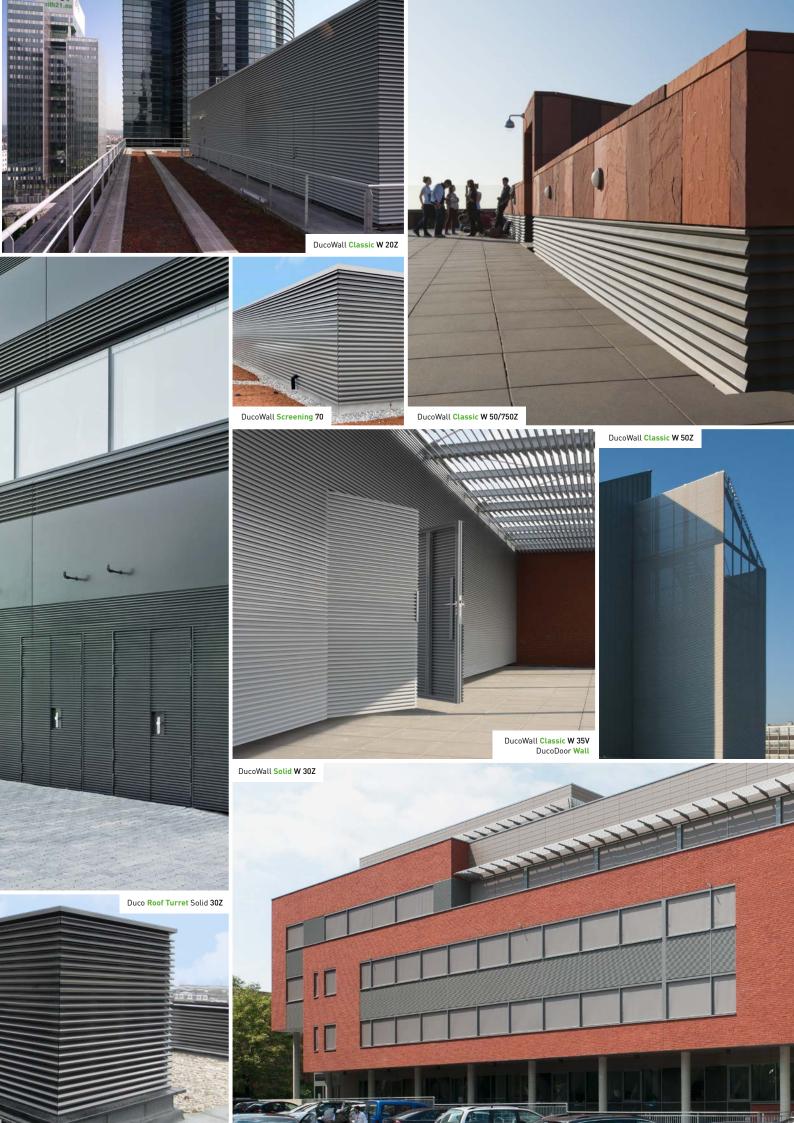
## Fall-through protection

The load applied to resist penetration that prevents people from falling through this barrier.

Note: often a specific mounting method applies or the test is only valid for specific versions (e.g. a certain step, a certain maximum span ...).

Contact DUCO for more information. Full test reports can be requested from DUCO.


## **Overview of new results**


DUCO products achieve very good results in terms of impact and fall-through protection:

|               | Impact p | rotection  | F        | all-throug     | n protectio | n      |
|---------------|----------|------------|----------|----------------|-------------|--------|
|               | EN 13049 | NF P08-302 | B03-00¢  | NEN EN1991-1-1 | NF P01-013  | BS6180 |
| Maximum class | Class 5  | H2         | Class C5 | Class C5       | C1-C5/D     | XI     |

DUCOWALL CLASSIC

| DucoWall Classic W 130HP Metal Clip | Class 5 | - | C5a | A/B/F/G | = | XI |
|-------------------------------------|---------|---|-----|---------|---|----|





# **SERVICE** PLEASE!

To provide optimum support for your project, you will find professional sectional drawings, technical data sheets, specification texts and assembly instructions on our

website: www.duco.eu

Find out what else DUCO can do for you.



#### $\textbf{Calculating airflow} \rightarrow \underline{\text{airflowcalculation.duco.eu}}$

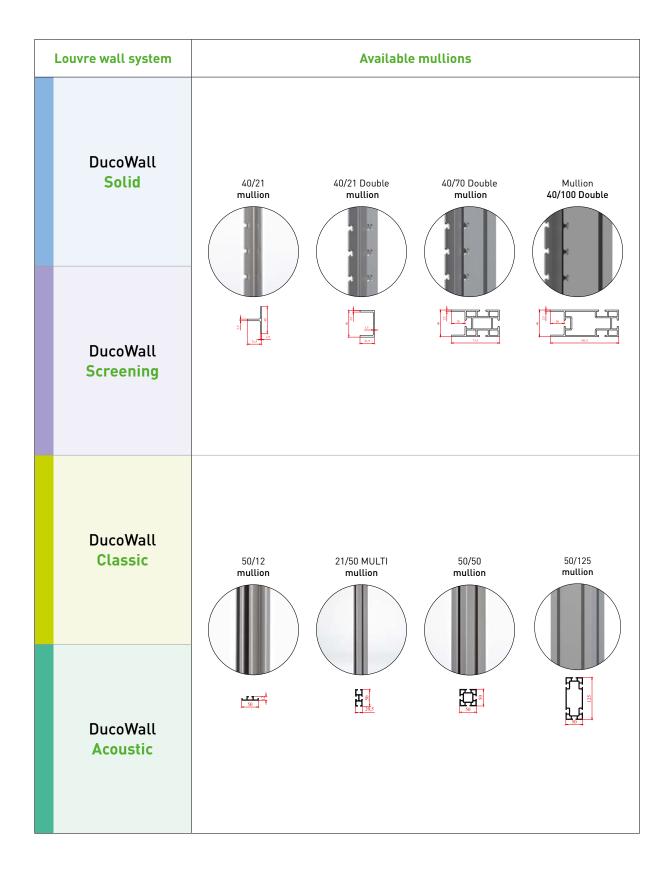
Calculate the required air flow rates, area or pressure differences for each type of louvre grille with this handy online tool.



#### BIM library → www.duco.eu/bim

All products in this library are freely available in Autodesk Revit.

**Specification texts**  $\rightarrow$  You will find specification texts for all products on our website www.duco.eu.




## TAILORED ADVICE

DUCO offers tailored expertise & services for specifiers, and has a dedicated unit to advise and support architects, engineering offices and consultancies. DUCO works with reputable organisations such as the WTCB, the Von Karman Institute, etc. DUCO's knowledge and years of experience enable an appropriate solution to be offered for each of your projects.

Any questions? Please contact us at info@duco.eu or call +32 58 33 00 66 to for tailored advice!

# OVERVIEW MULLIONS



# TECHNICAL SPECIFICATION TABLE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | S0                                         | LID                                          |                                                         |                                         |                                         |                                         |                                          |        |                                          |                                                  |                                                                  |                                            |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|--------|------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| → Ventila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation valu                                                                                                                                                                                 | ıes                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                            | <b>lid</b><br><b>DZ</b><br>p. 8              |                                                         | 20                                      | <b>ssic</b><br><b>0Z</b><br>p. 14       | 20                                      | <b>ssic</b><br><b>OV</b><br>p. 15        | 35     | <b>ssic</b><br>5 <b>V</b><br>p. 16       |                                                  | 50Z                                                              | <b>ssic</b><br>/ <b>30°</b><br>p. 17       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1                                     | Р                                          |                                              | NP                                                      |                                         |                                         |                                         |                                          |        |                                          | 65 p                                             | itch                                                             | 75                                         | oitch                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feature                                                                                                                                                                                    |                                                                                                                                      | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STND                                   | STND                                       | +0PT                                         | STND                                                    | STND                                    | +0PT                                    | STND                                    | +0PT                                     | STND   | +0PT                                     | STND                                             | +0PT                                                             | STND                                       | +0PT                                          |
| Visual free area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                      | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                     | 86                                         | 86                                           | 0                                                       | 63                                      | 63                                      | 95                                      | 95                                       | 59     | 59                                       | 41                                               | 41                                                               | 49                                         | 49                                            |
| Physical free area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                      | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34                                     | 48                                         | 48                                           | 0                                                       | 47                                      | 47                                      | 37                                      | 37                                       | 35     | 35                                       | 40                                               | 40                                                               | 46                                         | 46                                            |
| K factor, intake (la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21,43                                  | 18,26                                      | 18,58                                        | n/a                                                     | 22,68                                   | 24,27                                   | 41,62                                   | 45,04                                    | 71,82  | 74,32                                    | 14,57                                            | 15,62                                                            | 10,27                                      | 10,41                                         |
| K factor, exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17,08                                  | 13,62                                      | 14,13                                        | n/a                                                     | 30,52                                   | 33,03                                   | 41,62                                   | 45,04                                    | 65,04  | 66,10                                    | 10,54                                            | 10,96                                                            | 8,70                                       | 8,86                                          |
| Ce (higher is better)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,216                                  | 0,234                                      | 0,232                                        | n/a                                                     | 0,210                                   | 0,203                                   | 0,155                                   | 0,149                                    | 0,118  | 0,116                                    | 0,262                                            | 0,253                                                            | 0,312                                      | 0,310                                         |
| Cd (higher is better)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,242                                  | 0,271                                      | 0,266                                        | n/a                                                     | 0,181                                   | 0,174                                   | 0,155                                   | 0,149                                    | 0,124  | 0,123                                    | 0,308                                            | 0,302                                                            | 0,339                                      | 0,336                                         |
| → Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | resistand                                                                                                                                                                                  | ce                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                     |                                            |                                              |                                                         |                                         |                                         |                                         |                                          |        |                                          | <b>(5.</b>                                       | di ah                                                            | ns.                                        |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feature                                                                                                                                                                                    |                                                                                                                                      | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P1                                     | Р                                          | 2                                            | NP                                                      |                                         |                                         |                                         |                                          |        |                                          | 65 p                                             | itch                                                             | 75                                         | itch                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STND                                   | STND                                       | +0PT                                         | STND                                                    | STND                                    | +0PT                                    | STND                                    | +0PT                                     | STND   | +0PT                                     | STND                                             | +0PT                                                             | STND                                       | +OPT                                          |
| Water resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for v = 0 m/s                                                                                                                                                                              |                                                                                                                                      | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                                      | В                                          | В                                            | n/a                                                     | С                                       | В                                       | Α                                       | Α                                        | Α      | Α                                        | В                                                | Α                                                                | В                                          | В                                             |
| Water resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for v = 0.5 m/s                                                                                                                                                                            |                                                                                                                                      | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                                      | С                                          | В                                            | n/a                                                     | С                                       | В                                       | В                                       | Α                                        | Α      | Α                                        | С                                                | В                                                                | С                                          | В                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                      | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                                      | С                                          | В                                            | n/a                                                     | D                                       | С                                       | С                                       | В                                        | Α      | A                                        | С                                                | В                                                                | С                                          | С                                             |
| Water resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for v = 1.0 m/s                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | _                                          | _                                            |                                                         |                                         | _                                       | D                                       | В                                        | Α      | Α                                        | С                                                | С                                                                | С                                          | С                                             |
| Water resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                      | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                                      | С                                          | В                                            | n/a                                                     | D                                       | D                                       |                                         | _                                        |        |                                          |                                                  |                                                                  |                                            |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for v = 1.5 m/s<br>for v = 2.0 m/s                                                                                                                                                         |                                                                                                                                      | class<br>class<br>class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D D                                    | D D                                        | C<br>D                                       | n/a<br>n/a<br>n/a                                       | D<br>D                                  | D<br>D                                  | D<br>D                                  | C<br>D                                   | C<br>C | B<br>C                                   | D<br>D                                           | C<br>C                                                           | D<br>D                                     | C<br>D                                        |
| Water resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                                                                                                      | n                                                                                                                                    | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                      | D                                          | С                                            | n/a                                                     | D                                       | D                                       | D                                       | С                                        | С      | В                                        |                                                  |                                                                  |                                            |                                               |
| Water resistance Water resistance Water resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                                                                                                      |                                                                                                                                      | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                      | D<br>D                                     | С                                            | n/a                                                     | D                                       | D                                       | D                                       | С                                        | С      | В                                        | D                                                |                                                                  | D                                          |                                               |
| Water resistance water  | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                                                                                                      |                                                                                                                                      | class<br>class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D<br>D                                 | D<br>D                                     | C<br>D                                       | n/a<br>n/a                                              | D<br>D                                  | D<br>D                                  | D<br>D                                  | C<br>D                                   | C<br>C | В                                        | D 65 p                                           | C                                                                | 75 <sub> </sub>                            | D                                             |
| Water resistance Water resistance Water resistance Water resistance Rw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                                                                                                      |                                                                                                                                      | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D D                                    | D D                                        | C D                                          | n/a<br>n/a                                              | <b>D D</b>                              | <b>D D</b>                              | <b>D D</b>                              | <b>C D</b>                               | C<br>C | В<br>С                                   | 65 r                                             | C<br>sitch                                                       | 75 p                                       | D<br>pitch<br>/a                              |
| Water resistance Water resistance Water resistance Water resistance Rw C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                                                                                                      |                                                                                                                                      | class<br>class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1 n/a n/a                             | <b>D D P n</b> <sub>0</sub>                | C D                                          | n/a<br>n/a                                              | <b>D D n</b> ,                          | <b>D D</b> /a /a                        | <b>D D</b>                              | C<br>D                                   | C<br>C | <b>B C</b>                               | 65 p                                             | c<br>oitch<br>/a<br>/a                                           | <b>75</b> n                                | D<br>pitch<br>/a<br>/a                        |
| Water resistance water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  reductio  Solution                                                                                                                        | n                                                                                                                                    | class<br>class<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P1                                     | P P N,                                     | C D                                          | n/a n/a  NP n/a n/a n/a n/a                             | D D                                     | D D D                                   | <b>D D</b> n  n  n                      | /a //a //a                               | C C    | /a //a //a                               | 65 p                                             | C<br>Ditch<br>/a<br>/a<br>/a                                     | <b>75</b>                                  | D<br>Ditch<br>/a<br>/a<br>/a                  |
| Water resistance Water resistance Water resistance Water resistance Rw C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  reductio  Solution                                                                                                                        |                                                                                                                                      | class<br>class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P1 n/a n/a                             | P P D D D D D D D D D D D D D D D D D D    | C D                                          | n/a<br>n/a                                              | D D                                     | <b>D D</b> /a /a                        | <b>D</b> n  n  n  n  n                  | C<br>D                                   | C C C  | <b>B C</b>                               | 65 p. n. n. n. n.                                | c<br>oitch<br>/a<br>/a                                           | <b>75</b> I                                | D<br>pitch<br>/a<br>/a                        |
| Water resistance water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  reductio  Solution                                                                                                                        | at 125 Hz<br>at 250 Hz                                                                                                               | class<br>class<br>dB<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P1 n/a n/a n/a n/a n/a                 | P P P P P P P P P P P P P P P P P P P      | C D D                                        | n/a n/a n/a  NP n/a n/a n/a n/a n/a n/a n/a             | D D O O O O O O O O O O O O O O O O O O | /a //a //a //a //a //a                  | D D n n n n n n n n n n n n n n n n n n | /a //a //a //a //a //a                   | C C    | /a //a //a //a //a //a //a               | 65 p. n. n. n. n. n.                             | C                                                                | 75 p                                       | D  sitch /a /a /a /a /a /a                    |
| Water resistance water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  reductio  Solution                                                                                                                        | n<br>at 125 Hz                                                                                                                       | class<br>class<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P1                                     | P P P P P P P P P P P P P P P P P P P      | C D D                                        | n/a n/a n/a NP n/a n/a n/a n/a n/a                      | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a              | D D D N N N N N N N N N N N N N N N N N | /a //a //a //a //a //a                   | C C C  | /a / | 65 p                                             | c<br>vitch<br>v/a<br>v/a<br>v/a                                  | 75 p                                       | D  pitch /a /a /a /a                          |
| Water resistance water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  reductio  Solution                                                                                                                        | at 125 Hz<br>at 250 Hz<br>at 500 Hz                                                                                                  | class class dB dB dB dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1 n/a n/a n/a n/a n/a n/a             | P P P P P P P P P P P P P P P P P P P      | C D D 22 //a //a //a //a //a //a //a //a //a | n/a n/a n/a  NP n/a n/a n/a n/a n/a n/a n/a n/a         | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | D D D N N N N N N N N N N N N N N N N N | /a //a //a //a //a //a //a //a //a //a   | C C    | /a / | 65 p                                             | C  bitch  /a  /a  /a  /a  /a  /a                                 | 75   n                                     | bitch //a //a //a //a //a //a //a //a //a //  |
| Water resistance water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  reductio  Solution                                                                                                                        | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz                                                                                    | class class dB dB dB dB dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P1 n/a n/a n/a n/a n/a n/a n/a         | P P P P P P P P P P P P P P P P P P P      | C D D 22 //a //a //a //a //a //a //a //a //a | n/a n/a n/a  NP n/a n/a n/a n/a n/a n/a n/a n/a n/a     | D D D D D D D D D D D D D D D D D D D   | D D A A A A A A A A A A A A A A A A A A |                                         | /a / | C C    | /a / | 65 p                                             | c<br>itch<br>/a<br>/a<br>/a<br>/a<br>/a<br>/a<br>/a              | 75   n n n n n n n n n n n n n n n n n n   | bitch /a /a /a /a /a /a /a /a                 |
| Water resistance water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution es                                                                                                                   | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz<br>at 4000 Hz                                                        | class class dB dB dB dB dB dB dB dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1 n/a n/a n/a n/a n/a n/a n/a n/a n/a | P P P P P P P P P P P P P P P P P P P      | C D D 22 //a //a //a //a //a //a //a //a //a | n/a n/a n/a  NP n/a | D D D D D D D D D D D D D D D D D D D   | D D D                                   |                                         | C D A A A A A A A A A A A A A A A A A A  | C C    | B C C                                    | 65 p                                             | c c c c c c c c c c c c c c c c c c c                            | 75   n n n n n n n n n n n n n n n n n n   | bitch /a     |
| Water resistance ( Water resista | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution es                                                                                                                   | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz<br>at 4000 Hz                                                        | class class dB dB dB dB dB dB dB dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1 n/a n/a n/a n/a n/a n/a n/a n/a n/a | P P                                        | C D D 22 //a //a //a //a //a //a //a //a //a | n/a n/a n/a  NP n/a | D D D D D D D D D D D D D D D D D D D   | D D D                                   |                                         | C D A A A A A A A A A A A A A A A A A A  | C C    | B C C                                    | 65 p. n.     | c c c c c c c c c c c c c c c c c c c                            | 75   n n n n n n n n n n n n n n n n n n   | bitch /a        |
| Water resistance ( Water resista | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution es  Ons and di  Feature                                                                                              | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz<br>at 4000 Hz                                                        | class class dB dB dB dB dB dB dB S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P1                                     | P P D D D D D D D D D D D D D D D D D D    | C D                                          | n/a                 | D D D D D D D D D D D D D D D D D D D   | D D D                                   | n n n n n n n n n n n n n n n n n n n   | C D A A A A A A A A A A A A A A A A A A  | C C    | B C C                                    | 65 p                                             | c<br>bitch<br>/a<br>/a<br>/a<br>/a<br>/a<br>/a<br>/a<br>/a<br>/a | 75 p                                       | bitch /a  |
| Water resistance ( Water resista | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution es  Ons and di  Feature                                                                                              | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz<br>at 4000 Hz                                                        | class class dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P1                                     | P P 37                                     | C D D                                        | n/a                 | D D D D D D D D D D D D D D D D D D D   | D D D D D D D D D D D D D D D D D D D   | n n n n n n n n n n n n n n n n n n n   | C D                                      | C C    | B C C                                    | 65 p                                             | citch //a //a //a //a //a //a //a //a //a //                     | 75 p                                       | Doitch /a |
| Water resistance is Water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  es  Ons and di  Feature  aver (pitch)                                                                               | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz<br>at 4000 Hz                                                        | class class dB dB dB dB dB The state of the | P1                                     | P P 37 3 3                                 | C D D 22 // a // a // a // a // a // a //    | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | n n n n n n n n n n n n n n n n n n n   | C D D                                    | C C    | /a /a //a //a //a //a //a //a //a //a /  | 65 p                                             | C   Sitch   /a   /a   /a   /a   /a   /a   /a   /                 | 75 p                                       | bitch /a /bitch    |
| Water resistance is Water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  es  Ons and di  Feature  aver (pitch)                                                                               | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz<br>at 4000 Hz                                                        | class class dB dB dB dB dB The state of the | P1                                     | P P N. | C D D 22 //a //a //a //a //a //a //a //a //a | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | n n n n n n n n n n n n n n n n n n n   | C D D                                    | C C C  | /a /a //a //a //a //a //a //a //a //a /  | 65 p<br>n<br>n<br>n<br>n<br>n<br>n<br>n          | C   Sitch   /a   /a   /a   /a   /a   /a   /a   /                 | 75 p                                       | D   D   D   D   D   D   D   D   D   D         |
| Water resistance is Water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  Solution  Feature  avre (pitch)  40/ Screening                                                                      | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz<br>at 4000 Hz                                                        | class class  dB  dB  dB  dB  dB  dB  mm  mm  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P1                                     | P P 37 33 5 5 10                           | C D D 22 //a //a //a //a //a //a //a //a //a | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | n n n n n n n n n n n n n n n n n n n   | C D D                                    | C C C  | B   C   C   C   C   C   C   C   C   C    | 65 p                                             | C   Sitch   /a   /a   /a   /a   /a   /a   /a   /                 | 75   nn n | bitch //a //a //a //a //a //a //a //a //a //  |
| Water resistance ( Water resista | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  Solution  Feature avre (pitch)  40/ 40/ 40/ 40/ 40/ 40/ 40/ 40/ 40/                                                 | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz  imension:  /21 [Double] /70 Double                                   | class class dB dB dB dB dB dB mm mm mm mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1                                     | P P N. | C D D C C C C C C C C C C C C C C C C C      | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | n n n n n n n n n n n n n n n n n n n   | /a //a //a //a //a //a //a //a //a //a   | C C C  | ## C C C C C C C C C C C C C C C C C C   | 65 p                                             | C                                                                | 75   nn n | bitch //a //a //a //a //a //a //a //a //a //  |
| Water resistance is Water  | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  solution  es  Ons and di  Feature  avre (pitch)  Solid Screening  40, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, 60, 6 | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz  /21 [Double] /70 Double /12                                          | class class  dB  dB  dB  dB  dB  dB  dB  mm  mm  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P1                                     | P P N N N N N N N N N N N N N N N N N N    | C D D C C C C C C C C C C C C C C C C C      | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | D D D N N N N N N N N N N N N N N N N N | /a //a //a //a //a //a //a //a //a //a   | C C C  | ## C C C C C C C C C C C C C C C C C C   | 65 p<br>n.<br>n.<br>n.<br>n.<br>n.<br>n.         | itch //a //a //a //a //a //a //a //a //a //                      | 75   nn n | bitch /a //a //a //a //a //a //a //a //a //a  |
| Water resistance ( Water resista | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  Solution  Feature avre (pitch)  Solid Screening 40, Classic 21,                                                     | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz  /21 [Double] /70 Double /12 /50 MULTI                                | class class class  dB  dB  dB  dB  dB  dB  dB  mm  mm  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1                                     | P P                                        | C D D 22 //a //a //a //a //a //a //a //a //a | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a   | C C C  | ## C C C C C C C C C C C C C C C C C C   | 65 p<br>n. n. n | c  iitch /a //a //a //a //a //a //a //a //a //a                  | 75   nn n | bitch /a //a //a //a //a //a //a //a //a //a  |
| Water resistance ( Water resista | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  Solution  es  Ons and di  Feature  avre (pitch)  Classic Acoustic Acoustic 50/                                      | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz  imension  /21 (Double) /70 Double /110 Double /12 /50 MULTI /50      | class class class  dB  dB  dB  dB  dB  dB  dB  mm  mm  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1                                     | P P 377 3 3 5 5 11(                        | C D D 22 //a //a //a //a //a //a //a //a //a | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | D D D D D D D D D D D D D D D D D D D   | C D D                                    | C C C  | ## C C C C C C C C C C C C C C C C C C   | 65 p<br>n. n. n | c  iitch  /a  /a  /a  /a  /a  /a  /a  /a  /a  /                  | 75   nn n | bitch //a //a //a //a //a //a //a //a //a //  |
| Water resistance ( Water resista | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  d reductio  Solution  Solution  es  Ons and di  Feature  avre (pitch)  Classic Acoustic Acoustic 50/                                      | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz  imension  /21 [Double] /70 Double /110 Double /12 /50 MULTI /50 /125 | class class class  dB  dB  dB  dB  dB  dB  dB  mm  mm  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1                                     | P P 377 3 3 5 5 11(                        | C D D 22 //a //a //a //a //a //a //a //a //a | n/a                 | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a  | D D D D D D D D D D D D D D D D D D D   | /a //a //a //a //a //a //a //a //a //a   | C C C  | ## C C C C C C C C C C C C C C C C C C   | 65 p<br>n. n. n | c  iitch /a //a //a //a //a //a //a //a //a //a                  | 75   nn n | bitch /a //a //a //a //a //a //a //a //a //a  |

STND and +OPT version: see page 5

### DUCOWALL CLASSIC

|                     |          |          |                                      | 73310    |                                    |                   |            |                   |          |                               |                   |               |        |                             |          |          |          |        |
|---------------------|----------|----------|--------------------------------------|----------|------------------------------------|-------------------|------------|-------------------|----------|-------------------------------|-------------------|---------------|--------|-----------------------------|----------|----------|----------|--------|
| Clas<br>50<br>see p | Z        |          | <b>ssic</b><br>1 <b>75Z</b><br>p. 19 | 70       | <b>ssic</b><br>D <b>V</b><br>p. 20 | Clas<br>45<br>see | ssic<br>HP | Clas<br>50<br>see | HP       | Classic<br>130HP<br>see p. 23 | Clas<br>80<br>see | HP            |        | Classic<br>60C<br>see p. 25 |          |          |          |        |
|                     |          |          |                                      |          |                                    |                   |            | ·                 |          | ·                             |                   |               |        |                             |          |          |          |        |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        |                             |          |          |          |        |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        | 0C                          | 600      |          | 600      |        |
| STND                | +0PT     | STND     | +OPT                                 | STND     | +OPT                               | STND              | +0PT       | STND              | +OPT     | STND                          | STND              | +OPT          | STND   | +OPT                        | STND     | +OPT     | STND     | +OPT   |
| 75<br>52            | 75<br>52 | 80<br>54 | 80<br>54                             | 65<br>44 | 65<br>44                           | 70<br>60          | 70<br>60   | 88<br>68          | 88<br>68 | 88<br>70                      | 83<br>49          | 83<br>49      | 84     | 84<br>46                    | 84<br>36 | 84<br>36 | 84<br>36 | 36     |
| 23,80               | 23,34    | 20,85    | 20,85                                | 73,05    | 81,16                              | 11,49             | 11,49      | 7,80              | 8,07     | 9,35                          | 11,19             | 12,40         | 10,08  | 11,11                       | 23,11    | 24,51    | 31,21    | 32,65  |
| 12,94               | 14,13    | 11,34    | 12,06                                | 84,17    | 94,26                              | 6,75              | 7,34       | 5,19              | 5,81     | 11,49                         | 13,62             | 15,26         | 10,75  | 11,81                       | 26,03    | 27,41    | 42,72    | 43,86  |
| 0,205               | 0,207    | 0,219    | 0,219                                | 0,117    | 0,111                              | 0,295             | 0,295      | 0,358             | 0,352    | 0,327                         | 0,299             | 0,284         | 0,315  | 0,3                         | 0,208    | 0,202    | 0,179    | 0,175  |
| 0,278               | 0,266    | 0,297    | 0,288                                | 0,109    | 0,103                              | 0,385             | 0,369      | 0,439             | 0,415    | 0,295                         | 0,271             | 0,256         | 0,305  | 0,291                       | 0,196    | 0,191    | 0,153    | 0,151  |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        |                             |          |          |          |        |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        |                             |          |          |          |        |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               | 4      | 0C                          | 600      | `/2      | 600      | ·/3    |
| STND                | +0PT     | STND     | +0PT                                 | STND     | +0PT                               | STND              | +0PT       | STND              | +OPT     | STND                          | STND              | +0PT          | STND   | +OPT                        | STND     | +OPT     | STND     | +0PT   |
| В                   | Α        | В        | A                                    | В        | A                                  | C                 | В          | C                 | В        | A                             | A                 | Α             | В      | В                           | A        | Α        | A        | Α      |
| С                   | В        | С        | В                                    | В        | В                                  | С                 | В          | С                 | В        | A                             | В                 | В             | С      | С                           | Α        | A        | Α        | Α      |
| С                   | В        | С        | В                                    | В        | В                                  | С                 | С          | С                 | В        | Α                             | В                 | С             | С      | С                           | В        | В        | Α        | A      |
| С                   | С        | D        | С                                    | С        | C                                  | С                 | С          | D                 | С        | A                             | С                 | С             | D      | D                           | С        | С        | Α        | A      |
| D<br>D              | C<br>D   | D<br>D   | C<br>D                               | D<br>D   | D<br>D                             | D<br>D            | C<br>C     | D<br>D            | C        | A<br>C                        | C<br>D            | C<br>D        | D<br>D | D<br>D                      | C        | C        | A<br>C   | A<br>C |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        |                             | 1        |          |          |        |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        | 0C                          | 600      |          | 600      |        |
| n/                  |          | n,       |                                      |          | /a                                 | n/                |            |                   | /a       | n/a                           | n,                |               |        | n/a                         | n/       |          | n/       |        |
| n/                  |          |          | /a<br>/a                             |          | /a<br>/a                           | n/                |            | n,<br>n,          | /a<br>/a | n/a<br>n/a                    | n,<br>n,          |               |        | n/a<br>n/a                  | n/       |          | n/       |        |
| n/                  |          |          | /a                                   |          | /a                                 | n/                |            |                   | /a       | n/a                           | n,                |               |        | n/a                         | n/       |          | n/       |        |
| n/                  | 'a       | n,       | /a                                   | n,       | /a                                 | n/                | a          | n,                | /a       | n/a                           | n,                | /a            | n      | n/a                         | n/       | 'a       | n/       | 'a     |
| n/                  |          |          | /a                                   |          | /a                                 | n/                |            |                   | /a       | n/a                           | n,                |               |        | n/a                         | n/       |          | n/       |        |
| n/                  |          |          | /a<br>/a                             |          | /a<br>/-                           | n/                |            |                   | /a<br>/a | n/a<br>n/a                    | n,<br>n,          |               |        | n/a<br>n/a                  | n/       |          | n/       |        |
| n/                  |          |          | /a<br>/a                             |          | /a<br>/a                           | n/                |            |                   | /a<br>/a | n/a                           | n,                |               |        | n/a                         | n/       |          | n/       |        |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        |                             |          |          |          |        |
|                     |          |          |                                      |          |                                    |                   |            |                   |          |                               |                   |               |        | 0C                          | 600      |          | 600      |        |
| 65                  |          |          | '5<br>i3                             |          | 5 '5                               | 5                 |            |                   | 6        | 50<br>133                     | 7                 | 5<br>4        |        | 50<br>77                    | 7        |          | 7        |        |
| 5                   |          |          | 13<br>IC                             |          | is<br>K                            | 3                 |            |                   | 6<br>C   | 133                           |                   | <u>4</u><br>< |        | ×                           | 3        |          | 3        |        |
| <u> </u>            |          |          | K                                    |          | K.                                 | 3                 |            |                   | C        | ×                             |                   | ζ             |        | ×                           | 3        |          | 3        |        |
| 3                   |          |          | K                                    |          | K                                  | 3                 |            |                   | ς        | ж                             |                   | ς             |        | x                           | 3        |          | 3        |        |
| 6                   | 5        | 6        | 5                                    | 8        | 7                                  | 6                 | )          | 6                 | 8        | 145                           | 9                 | 6             | 8      | 89                          | 5        | ζ        | 5        | ξ      |
| 10                  | 13       | 10       | 03                                   | 13       | 25                                 | 9                 | 3          | 10                | 06       | 183                           | 10                | 34            | 1      | 27                          | 3        | ζ        | 3        | ζ      |
| 10                  | 13       | 10       | 03                                   | 12       | 25                                 | 9                 | 3          | 10                | 06       | 183                           | 10                | 34            | 1      | 27                          | 12       | 27       | 12       | 27     |
| 17                  |          |          | 78                                   |          | 00                                 | 14                |            |                   | 31       | 258                           | 20                |               |        | 102                         | 20       |          | 20       |        |
| 15                  | 50       | 15       | 50                                   | 21       | 50                                 | 13:               | 30         | 11                | 00       | 2300                          | 13                | 50            | 1 12   | 250                         | 12       | 50       | 12       | ხ0     |

# TECHNICAL SPECIFICATION TABLE

|                                                                                                                                                   | _                                                                                                                  |                                                                                                                                   |                                                                         |                                         | DUCOWALL<br>ACOUSTIC                    |                                       |                                       |                                       |                                                 |                                         |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------------------------|----------------------|
|                                                                                                                                                   |                                                                                                                    |                                                                                                                                   |                                                                         | Aco: 75                                 | 5Z                                      | Acou<br>75                            | 5L                                    | 15                                    | ustic<br>50                                     | 3                                       | ustic<br>00          |
| → Ventila                                                                                                                                         | ation va                                                                                                           | lues                                                                                                                              |                                                                         | see                                     | p. 28<br>                               | see                                   | p. 28<br>                             | see                                   | p. 29<br>                                       | See                                     | p. 29                |
|                                                                                                                                                   | Feature                                                                                                            |                                                                                                                                   | Unit                                                                    | STND                                    | +OPT                                    | STND                                  | +OPT                                  | STND                                  | +OPT                                            | STND                                    | +0PT                 |
| Visual free area                                                                                                                                  |                                                                                                                    |                                                                                                                                   | %                                                                       | 76                                      | 76                                      | 95                                    | 95                                    | 74                                    | 74                                              | 74                                      | 74                   |
| Physical free area                                                                                                                                | a .                                                                                                                |                                                                                                                                   | %                                                                       | 28                                      | 28                                      | 28                                    | 28                                    | 35                                    | 35                                              | 35                                      | 35                   |
| K factor, intake                                                                                                                                  |                                                                                                                    |                                                                                                                                   |                                                                         | 26,03                                   | 26,03                                   | 22,25                                 | 22,89                                 | 11,04                                 | 11,49                                           | 13,52                                   | 16,00                |
| K factor, exhaust                                                                                                                                 | (lower is better)                                                                                                  |                                                                                                                                   |                                                                         | 29,86                                   | 30,19                                   | 15,02                                 | 15,50                                 | 10,96                                 | 11,41                                           | 13,52                                   | 16,00                |
| Ce (higher is better)                                                                                                                             |                                                                                                                    |                                                                                                                                   |                                                                         | 0,196                                   | 0,196                                   | 0,212                                 | 0,209                                 | 0,301                                 | 0,295                                           | 0,272                                   | 0,250                |
| Cd (higher is better)                                                                                                                             | )                                                                                                                  |                                                                                                                                   |                                                                         | 0,183                                   | 0,182                                   | 0,258                                 | 0,254                                 | 0,302                                 | 0,296                                           | 0,272                                   | 0,250                |
| → Water                                                                                                                                           | resista                                                                                                            | ince                                                                                                                              |                                                                         |                                         |                                         |                                       |                                       |                                       |                                                 |                                         |                      |
|                                                                                                                                                   | Feature                                                                                                            |                                                                                                                                   | Unit                                                                    |                                         |                                         |                                       |                                       |                                       |                                                 |                                         |                      |
|                                                                                                                                                   | reature                                                                                                            |                                                                                                                                   | Offic                                                                   | STND                                    | +0PT                                    | STND                                  | +OPT                                  | STND                                  | +OPT                                            | STND                                    | +OPT                 |
| Water resistance                                                                                                                                  | for v = 0 m/s                                                                                                      |                                                                                                                                   | class                                                                   | В                                       | В                                       | В                                     | В                                     | В                                     | В                                               | A                                       | A                    |
| Water resistance                                                                                                                                  |                                                                                                                    |                                                                                                                                   | class                                                                   | В                                       | В                                       | В                                     | В                                     | С                                     | С                                               | В                                       | В                    |
|                                                                                                                                                   |                                                                                                                    |                                                                                                                                   | class                                                                   | С                                       | С                                       | C                                     | С                                     | C                                     | C                                               | В                                       | В                    |
| Water resistance                                                                                                                                  |                                                                                                                    |                                                                                                                                   |                                                                         |                                         |                                         |                                       |                                       | _                                     |                                                 |                                         | _                    |
| Water resistance                                                                                                                                  | for v = 1.5 m/s                                                                                                    |                                                                                                                                   | class                                                                   | С                                       | С                                       | D                                     | D                                     | C                                     | C                                               | С                                       | С                    |
|                                                                                                                                                   | for v = 1.5 m/s<br>for v = 2.0 m/s                                                                                 |                                                                                                                                   | class<br>class<br>class                                                 |                                         |                                         |                                       |                                       | C<br>D<br>D                           | C<br>D<br>D                                     | C<br>C<br>D                             | C<br>C<br>D          |
| Water resistance<br>Water resistance                                                                                                              | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                              |                                                                                                                                   | class                                                                   | C<br>D                                  | C<br>D                                  | D<br>D                                | D<br>D                                | D                                     | D                                               | С                                       | С                    |
| Water resistance<br>Water resistance<br>Water resistance                                                                                          | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                              | ion                                                                                                                               | class                                                                   | C<br>D<br>D                             | C<br>D                                  | D<br>D<br>D                           | D<br>D                                | D                                     | D<br>D                                          | C<br>D                                  | С                    |
| Water resistance Water resistance Water resistance  Sound                                                                                         | for v = 1.5 m/s<br>for v = 2.0 m/s<br>for v = 2.5 m/s                                                              | ion                                                                                                                               | class<br>class                                                          | C<br>D<br>D                             | C<br>D<br>D                             | D D D                                 | D D D D                               | D D D                                 | D D                                             | C D                                     | C D                  |
| Water resistance Water resistance Water resistance  Sound  Rw C C C tr                                                                            | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s reduct                                                             | ion                                                                                                                               | class<br>class                                                          | C<br>D<br>D                             | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D 1                                 | D D 1                                           | C D                                     | C D                  |
| Water resistance Water resistance Water resistance  Sound Rw C                                                                                    | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s reduct                                                             | ion<br>ution<br>at 125 Hz                                                                                                         | class<br>class<br>dB                                                    | C D D D C C C C C C C C C C C C C C C C | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | 1 4                                   | 1<br>1<br>2<br>8                                | C D                                     | 77<br>-1<br>-3<br>-8 |
| Water resistance Water resistance Water resistance  Sound  Rw C C C tr                                                                            | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s reduct                                                             | at 125 Hz                                                                                                                         | class class dB dB dB                                                    | C D D C C C C C C C C C C C C C C C C C | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | 1<br>                                 | 1<br>1<br>2<br>8<br>4                           | C D                                     | C D                  |
| Water resistance Water resistance Water resistance  Sound  Rw C C C tr                                                                            | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s reduct                                                             | at 125 Hz<br>at 250 Hz<br>at 500 Hz                                                                                               | class class dB dB dB dB                                                 | C D D C C C C C C C C C C C C C C C C C | C D D D D D D D D D D D D D D D D D D D | B B B B B B B B B B B B B B B B B B B | D D D D D D D D D D D D D D D D D D D | 1 4 4 7 7                             | 1<br>1<br>2<br>8<br>4<br>4                      | C D                                     | C D                  |
| Water resistance Water resistance Water resistance  Sound  Rw C C C tr                                                                            | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s reduct                                                             | at 125 Hz                                                                                                                         | class class dB dB dB                                                    | C D D C C C C C C C C C C C C C C C C C | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | 1<br>                                 | 1<br>1<br>2<br>8<br>4                           | C D                                     | C D                  |
| Water resistance Water resistance Water resistance  Sound  Rw C C C tr                                                                            | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s reduct                                                             | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz                                                                                 | class class dB dB dB dB                                                 | C D D C C C C C C C C C C C C C C C C C | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | 1 1 4 4 7 7 111 12                    | 1<br>1<br>2<br>8<br>4<br>4                      | C D                                     | C D D                |
| Water resistance Water resistance Water resistance  Sound  Rw C C C t Octave band value                                                           | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution                                                | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 2000 Hz                                                                   | class class dB dB dB dB dB dB dB                                        | C D D C C C C C C C C C C C C C C C C C | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | 1 1 4 4 7 7 111 12                    | D D D D D D D D D D D D D D D D D D D           | C D                                     | C D                  |
| Water resistance Water resistance Water resistance  Sound Rw C C C tr Octave band value                                                           | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Solution  Feature                             | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 4000 Hz                                                                   | class class dB dB dB dB dB dB Unit                                      | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | 1<br>                                 | 1<br>1<br>1<br>2<br>.8<br>4<br>.4<br>.4<br>.2,4 | C D                                     | C D D                |
| Water resistance Water resistance Water resistance  Sound Rw C C C t Octave band value  Mullio Spacing of the low                                 | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Solution  Feature                             | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 4000 Hz                                                                   | class class dB | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D           | C D D                                   | C D D                |
| Water resistance Water resistance Water resistance  Sound Rw C C C tr Octave band value                                                           | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Solution  Feature                             | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 4000 Hz<br>dimension                                                      | class class dB dB dB dB dB TB       | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D           | C D D                                   | C D D                |
| Water resistance Water resistance Water resistance  Sound Rw C C C t Octave band value  Mullio Spacing of the low                                 | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Feature aver (pitch)                          | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 4000 Hz<br>dimension                                                      | class class  dB  dB  dB  dB  dB  dB  dB  mm  mm                         | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D           | C D                                     | C D D                |
| Water resistance Water resistance Water resistance  Sound Rw C C C t Octave band value  Mullio Spacing of the low                                 | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Solution  Feature  Evere (pitch)              | at 125 Hz<br>at 250 Hz<br>at 500 Hz<br>at 1000 Hz<br>at 4000 Hz<br>dimension                                                      | class class dB dB dB dB dB TB       | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D           | C D                                     | C D D                |
| Water resistance Water resistance Water resistance  Sound Rw C C C tr Octave band value  Mullio Spacing of the lou Louvre depth                   | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Feature aver (pitch)                          | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension                                                          | class class  dB  dB  dB  dB  dB  dB  dB  mm  mm  mm                     | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D           | C D                                     | C D D                |
| Water resistance Water resistance Water resistance  Water resistance  Sound  Rw C C C T Octave band value  Mullio Spacing of the lou Louvre depth | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  reduct  solution  solution  Feature ivre (pitch)  Solid Screening | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension  40/21 (Double) 40/70 Double                             | class class class  dB dB dB dB dB dB mm mm mm mm                        | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D           | C D D                                   | C D D                |
| Water resistance Water resistance Water resistance  Sound Rw C C C tr Octave band value  Mullio Spacing of the lou Louvre depth                   | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Feature aver (pitch)                          | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension  40/21 (Double) 40/70 Double 40/100 Double 50/12         | class class class  dB dB dB dB dB dB mm mm mm mm mm                     | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D           | C D D                                   | C D D                |
| Water resistance Water resistance Water resistance  Sound Rw C C C tr Octave band value  Mullio Spacing of the lou Louvre depth                   | for v = 1.5 m/s for v = 2.0 m/s for v = 2.5 m/s  I reduct  Solution  Feature sivre (pitch)  Classic                | at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz double 40/21 (Double) 40/70 Double 40/100 Double 50/12 21/50 MULTI | class class class  dB  dB  dB  dB  dB  dB  dB  mm  mm  mm               | C D D D D D D D D D D D D D D D D D D D | C D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D D D D D D D D D D D D D D D D D D | D D 1 1 1 2 8 4 4 4 4 3 3                       | C D D T T T T T T T T T T T T T T T T T | C D D                |

STND and +OPT version: see page 5

### DUCOWALL SCREENING

#### Screening 35

see p. 12

#### Screening 70

see p. 13

| 75 pitch |       | 112   | pitch | 150 pitch |       | 75 p  | itch  | 112   | pitch | 150 pitch |       |
|----------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-----------|-------|
| STND     | +0PT  | STND  | +0PT  | STND      | +0PT  | STND  | +0PT  | STND  | +0PT  | STND      | +0PT  |
| 52       | 52    | 68    | 68    | 76        | 76    | 53    | 53    | 68    | 68    | 77        | 77    |
| 29       | 29    | 27    | 27    | 35        | 35    | 37    | 37    | 59    | 59    | 55        | 55    |
| 61,04    | 61,04 | 67,19 | 68,30 | 23,56     | 24,03 | 30,19 | 30,52 | 22,25 | 22,25 | 13,72     | 14,35 |
| 38,10    | 38,58 | 33,03 | 32,65 | 19,93     | 20,29 | 25,00 | 25,77 | 13,72 | 14,13 | 10,21     | 10,54 |
| 0,128    | 0,128 | 0,122 | 0,121 | 0,206     | 0,204 | 0,182 | 0,181 | 0,212 | 0,212 | 0,270     | 0,264 |
| 0,162    | 0,161 | 0,174 | 0,175 | 0,224     | 0,222 | 0,200 | 0,197 | 0,270 | 0,266 | 0,313     | 0,308 |

| 75 p | 75 pitch 112 pitch |      | 150 pitch |      | 75 pitch |      | 112  | pitch | 150 pitch |      |      |
|------|--------------------|------|-----------|------|----------|------|------|-------|-----------|------|------|
| STND | +OPT               | STND | +OPT      | STND | +0PT     | STND | +0PT | STND  | +OPT      | STND | +0PT |
| Α    | Α                  | В    | В         | С    | С        | В    | Α    | В     | В         | С    | С    |
| В    | В                  | С    | В         | С    | С        | С    | В    | С     | В         | D    | С    |
| В    | В                  | С    | С         | D    | D        | С    | С    | С     | С         | D    | D    |
| D    | D                  | D    | D         | D    | D        | С    | С    | С     | С         | D    | D    |
| D    | D                  | D    | D         | D    | D        | D    | D    | D     | С         | D    | D    |
| D    | D                  | D    | D         | D    | D        | D    | D    | D     | D         | D    | D    |

| 75 pitch | 112 pitch | 150 pitch | 75 pitch | 112 pitch | 150 pitch |
|----------|-----------|-----------|----------|-----------|-----------|
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |
| n/a      | n/a       | n/a       | n/a      | n/a       | n/a       |

| 75 pitch | 112 pitch | 150 pitch | 75 pitch | 112 pitch | 150 pitch |  |  |  |
|----------|-----------|-----------|----------|-----------|-----------|--|--|--|
| 75       | 112       | 150       | 75       | 112       | 150       |  |  |  |
| 43       | 43        | 43        | 82       | 82        | 82        |  |  |  |
| 57       | 57        | 57        | 94,5     | 94,5      | 94,5      |  |  |  |
| 107      | 107       | 107       | 145      | 145       | 145       |  |  |  |
| 137      | 137       | 137       | 175      | 175       | 175       |  |  |  |
|          | 30        |           |          | х         |           |  |  |  |
|          | 30        |           | ×        |           |           |  |  |  |
|          | x         |           |          | ×         |           |  |  |  |
|          | ×         |           |          | x         |           |  |  |  |
|          | 2000      |           | 2400     | 2400      | 2400      |  |  |  |



