LOUVRE WALL SYSTEMS

HOME OF OXYGEN

DUCO Ventilation & Sun Control provides every building with a healthy supply of oxygen. With a comprehensive range of innovative natural and mechanical ventilation systems, either combined with external solar shading or otherwise, DUCO offers the ultimate guarantee of a healthy and comfortable indoor climate. The occupant's health is,

therefore, central to DUCO. A well-thought-out combination of basic ventilation, mechanical extraction, purge ventilation and solar shading ensures optimum air quality.

DUCO provides an innovative solution for residential buildings, offices, schools or care centres where everyone feels at home.

DUCO, Home of Oxygen

GENERAL	4
PRODUCTS	6
DUCOWALL SOLID DucoWall Solid W 30Z	8
DUCOWALL SCREENING	
DucoWall Screening 35	
DucoWall Screening 55 DucoWall Screening 70	
DUCOWALL CLASSIC	1 /
DucoWall Classic W 20Z DucoWall Classic W 20V	
DucoWall Classic W 35V	
DucoWall Classic W 50Z	17
DucoWall Classic W 50/75Z	
DucoWall Classic W 70V	
DucoWall Classic W 45HP DucoWall Classic W 50HP	
DucoWall Classic W 130HP	
DucoWall Classic W 60C	
DUCOWALL ACOUSTIC	
DucoWall Acoustic W 75Z & W 75L	
DucoWall Separating Assusting	
DucoWall Screening Acoustic	
DUCODOOR LOUVRE DOORS	
DucoDoor Wall	
DucoDoor LouvreDucoDoor Grille	
ROOF TURRETS	
Duco Roof Turret Solid 30Z	36
IMPACT AND FALL-THROUGH	
PROTECTION	38
REFERENCE PROJECTS	40
VARIOUS	42
Service	
Overview of mullions	
Technical specification table	44

DISCLAIMERIllustrations in this catalogue may differ from actual product. Printing errors and/or changes excepted. DUCO reserves the right to amend this information at any time. The information stated is valid as at 29.10.2025 and may be subject to changes in legislation.

A SOLUTION FOR **EVERY SITUATION**

→ Quick assembly

With DUCO's patented "Turn-Click" system for DucoWall Classic and Acoustic, plastic louvre holders are prefastened to the mullion. The louvre blades are easily clicked on to this

With DUCO's patented "Direct Clip" system for DucoWall

Solid and Screening, the louvre blades are clicked onto the mullion directly, ensuring superquick assembly.

→ Finish

Almost every type of louvre wall is available in all colours: SAA, any RAL colour, textured paint, special colours / lacquers ... All types of louvre walls are painted in SeaSide grade as standard. In addition, every type of louvre wall in this brochure complies with the Qualicoat or Qualanod quality specifications.

→ Vandalism and intrusion security

Solid louvre blades are very sturdy and "vandal-proof".

Optionally, every type of louvre

wall (DucoWall Solid, Classic*, Acoustic and Screening) can be made burglar resistant up to resistance class 3, and the DucoDoor Louvre and Grille louvre doors can be made burglar resistant up to resistance class 2 in accordance with European

standards.

* Except DucoWall Classic W 60C/2, W 60C/3, DucoWall Acoustic W 300 and DucoWall Screening Acoustic Double Bank.

→ Insect screen and vermin screen

With DucoWall Solid louvre blades with small punching slots (P1), the perforated louvre blades act as an insect screen. With all other types (Solid P2, Classic, Acoustic and Screening),

optional 2.3 x 2.3 mm or 6 x 6 mm stainless-steel mesh can be selected.

Stainless-steel mesh

DucoWall Solid W 30Z P1

→ Ventilation capacity

Each louvre wall is tested extensively and optimised by DUCO's R&D department.

The "High Performance" HP louvre blades in the DucoWall Classic range ensure excellent airflow thanks to low resistance.

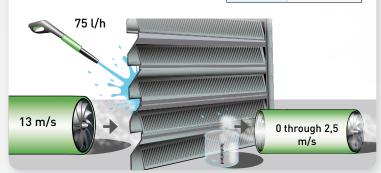
Airflow performance class	Ce or Cd
1	≥ 0,4
2	0,3 - 0,399
3	0,2 - 0,299
4	≤ 0,199

High Performance

DucoWall Classic W 130HP

→ Penetration security

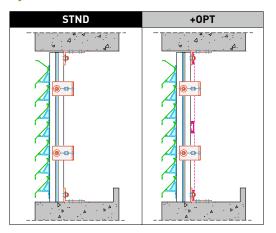
DucoWall Classic louvre walls with **V-louvre blades** are penetration proof.



All DucoWall louvre wall systems have been tested by **BSRIA** in accordance with the water tightness tests developed in collaboration with HEVAC. The test

simulates 75 litres per hour rainfall at a wind speed of 13 metres per second. A class is assigned to the louvre wall on the basis of the air velocity in the louvre wall and the % of watertightness.

Class A	100 - 99 %
Class B	98,5 - 95 %
Class C	94,9 - 80 %
Class D	< 80 %


EN13030

→ Sound absorption

DucoWall Acoustic louvre blades are fitted on the inside with noncombustible mineral wool and are ideally suited for applications with high levels of noise intrusion.

→ STND and +OPT version

The technical values of our grilles have been tested in two ways:

STND = "Standard"

This is the standard version.

+0PT = "+0ptions"

This is an optional version where the louvre wall has been tested incl. insect screen.

The **+OPT** version will often bring better results in terms of water resistance. See each product page for all values per grille type.

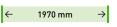
PRODUCTOVERVIEW

Ventilation capacity = at intake

= at exhaust The longer the bar, the greater the airflow. STND and +OPT version: see page 5

Maximum span

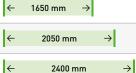
between two mullions at 800 Pa and pressure coefficient: 1.2


DUCOWALL SOLID

Sturdy aluminium blades that connect to one another ensure vandal-proof louvre walls with a minimal support structure. Very quick assembly thanks to DUCO's patented "Direct-Clip" system.

DucoWall Solid W 30Z

see p. 8


DUCOWALL SCREENING

Aluminium louvre wall system that is eminently suitable for projects where the wall acts primarily as screening. These systems guarantee very quick assembly.

DucoWall Screening 35 DucoWall Screening 55

DucoWall Screening 70

+OPT	
STND +OPT	
STND	
+OPT	

2400 mm

see p. 11 see p. 12

see p. 13

DUCOWALL CLASSIC

Aluminium louvre wall system with louvre blade holders. Quick assembly with DUCO's "Turn-Click" system. These louvre blade holders can be fitted on the mullion separately, enabling a perfect finish to be achieved.

1 22	J •		
DucoWall Classic W 20Z	+OPT	← 1200 mm →	see p. 14
	+OPT +OPT	← 1850 mm →	see p. 15
	+OPT	← 2650 mm →	see p. 16
(6) IIIICOWAII I JASSIC W 511/	+OPT	← 1550 mm →	see p. 17
(G)	+OPT	← 1550 mm →	see p. 18
DucoWall Classic W 70V	+OPT	← 2150 mm →	see p. 19
DucoWall Classic W 45HP	+OPT	← 1330 mm →	see p. 20
DucoWall Classic W 50HP	+OPT	←1100 mm→	see p. 21
	+OPT n/a	← 2300 mm →	see p. 22
DucoWall Classic W 60C	STND +OPT	← 1250 mm →	see p. 23

 $^{^{\}rm 1}$ Impact and fall-through protection only applies in combination with Metal Clips.

Ventilation capacity

= at intake
= at exhaust
The longer the bar,
the greater the airflow.
STND and +OPT version:
see page 5

Maximum span

between two mullions at 800 Pa and pressure coefficient: 1.2

DUCOWALL ACOUSTIC

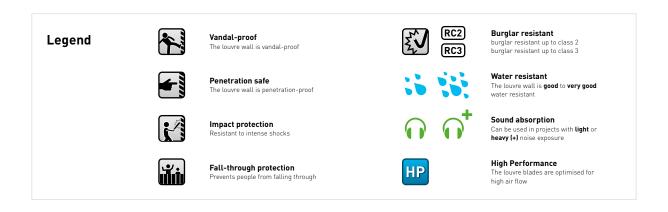
Aluminium louvre wall system with louvre blades that are fitted with **sound-absorbing**, non-combustible mineral wool. Quick assembly with DUCO's patented "Turn-Click" system².

- STND DucoWall Acoustic W 75Z \rightarrow 1700 mm see p. 24 +0PT STND OucoWall Acoustic W 75L 1650 mm +0PT STND \rightarrow DucoWall Acoustic W 150 2150 mm see p. 25 +OPT STND \rightarrow DucoWall Acoustic W 300 2150 mm +0PT STND \rightarrow **DucoWall Screening Acoustic** 2425 mm see p. 26 +0PT
 - ² "Turn-Click" system is not applicable to DucoWall Screening Acoustic. DucoWall Screening Acoustic is installed according to DucoWall Screening.

DUCODOOR LOUVRE DOORS

Ventilated louvre doors or false louvre doors, optionally either integrated or not into the louvre wall.

Duco <mark>Door Wall</mark>	Louvre door in louvre wall system without specific requirements	see p. 31
Duco <mark>Door Louvre </mark>	Ventilated louvre door or false louvre door in the louvre wall system with specific requirements for intrusion resistance and/or draught-proofing	see p. 32
DucoDoor Grille RC2	Free-standing ventilated louvre door or false louvre door, either with or without specific requirements for intrusion resistance and/or draught-proofing	see p. 33

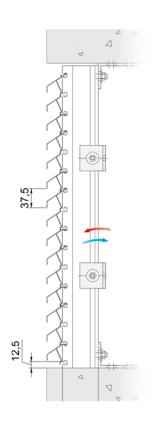

ROOF TURRETS

Kits and components to build roof cowls with DucoWall louvre blades.

Duco Roof Turret Solid 30Z

see p. 36

³ Impact and fall-through protection is only applicable with specific mounting requirements. Contact DUCO for more information.



DucoWall

Solid W 30Z

DucoWall Solid 30Z louvre blades offer high ventilation capacity with relatively small louvre blades. The "stackable" louvre blades form a single whole, making them **extra strong** and **vandal-proof**. The strong louvre blade system requires a minimal support structure. DUCO's "Direct Clip" system ensures **very quick assembly**.

DIMENSIONS AND MULLIONS

Type of mullion	40/21 (Double)	40/70 Double	40/100 Double
Louvre pitch		37,5 mm	
Louvre depth		30 mm	
Installation depth	52 mm	102 mm	132 mm
Maximum span between 2 mullions	←	1970 mm	\rightarrow

VENTILATION VALUES

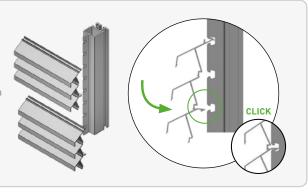
Droporty		P	P1		P2	
Property	Property		+0PT	STND	+0PT	
Visual free area		60 %	n/a	86 %	86 %	
Physical free area		34 %	n/a	48 %	48 %	
Ce (higher is better)		0,216	n/a	0,234	0,232	
Cd (higher is better)		0,242	n/a	0,271	0,266	
K-FACTOR	INTAKE	21,43	n/a	18,26	18,58	
(lower is better)	EXHAUST	17,08	n/a	13,62	14,13	

STND and +OPT version: see page 5

WATER RESISTANCE 🐪

Punching

DucoWall Solid W 30Z is available with louvre blades with **small punching (P1)**, **large punching (P2)** or without punching as **false louvres (NP)**. Combining the two in the same project ensures a uniform appearance.

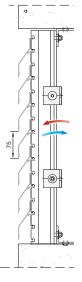

INSECT SCREEN

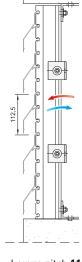
Punching	P1	P2	NP
Resistant to	Perforated louvre blades as insect screen	Perforated louvre blades as bird screen OPTIONS Stainless steel mesh, 2.3 x 2.3 mm Stainless steel mesh, 6 x 6 mm	100 % false louvre

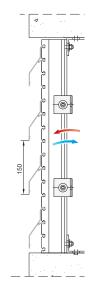
SUPERFAST ASSEMBLY

DucoWall Solid W 30Z is made up of **triple louvre blades** that are clicked together one above the other onto the mullion using DUCO's "Direct Clip" system. This ensures a very sturdy unit and extremely quick assembly.

The final row can be finished with a single louvre blade.

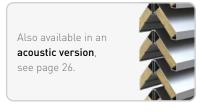





Louvre pitch 150

DucoWall **Screening 35**

DucoWall Screening 35 is a louvre wall system that can be clicked directly onto the mullion. This results in **quick and smooth assembly**. There are three different louvre blades to choose from. In this way, the louvre wall can be adapted to the wishes and needs of any project. The system is eminently suitable for projects where the louvre wall acts primarily as **screening**.


Louvre pitch 75

Louvre pitch 112

Louvre pitch 150

DIMENSIONS AND MULLIONS

Type of mullion	40/21 (Double)	40/70 Double	40/100 Double		
Louvre pitch	75 mm - 112 mm - 150 mm				
Louvre depth	43 mm				
Installation depth	57 mm	107 mm	137 mm		
Maximum span between 2 mullions	←	1650 mm	\rightarrow		

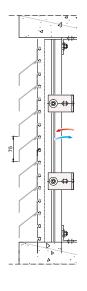
VENTILATION VALUES

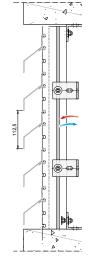
Dramanti		75		112		150	
Property		STND	+0PT	STND	+0PT	STND	+0PT
Visual free area		52 %	52 %	68 %	68 %	76 %	76 %
Physical free are	ea	29 %	29 %	27 %	27 %	35 %	35 %
Ce (higher is better)		0,128	0,128	0,122	0,121	0,206	0,204
Cd (higher is better)		0,162	0,161	0,174	0,175	0,224	0,222
K-FACTOR	INTAKE	61,04	61,04	67,19	68,30	23,56	24,03
(lower is better)	EXHAUST	38,10	38,58	33,03	32,65	19,93	20,29

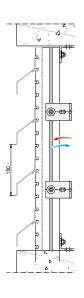
WATER RESISTANCE 🐪

Air velo-						
75		11	12	15	50	
STND	+OPT	STND	+OPT	STND	+0PT	
Α	Α	В	В	С	С	
В	В	С	В	С	С	
В	В	С	С	D	D	
D	D	D	D	D	D	
D	D	D	D	D	D	
D	D	D	D	D	D	
	A B B D	STND +0PT A A B B B B D D D	75 11 STND +OPT STND A A B B B C B B C D D D D D	75 112 STND +0PT STND +0PT A A B B B B C B B B C C D D D D D D	75 112 18 STND +OPT STND +OPT STND A A B B C B B C B C B B C C D D D D D D D D	

STND and +OPT version: see page 5


 [→] Overview of mullions: see page 43
 → Full specifications: see page 44




Louvre pitch 150

DucoWall **Screening 55**

DucoWall Screening 55 is a louvre wall system with a **span of up to 2 metres**. This variant offers the **happy medium** in the Screening range: a high span and a good airflow, but with limited installation depth. These louvres are also attached directly to the mullion and are available with different louvre pitches (75 / 112 / 150 mm).

Louvre pitch 75

Louvre pitch 112

Louvre pitch 150

DIMENSIONS AND MULLIONS

Type of mullion	40/21 (Double)	40/70 Double	40/100 Double			
Louvre pitch	75 m	75 mm - 112 mm - 150 mm				
Louvre depth		64 mm				
Installation depth	77 mm	127 mm	157 mm			
Maximum span between 2 mullions	←	2050 mm	\rightarrow			

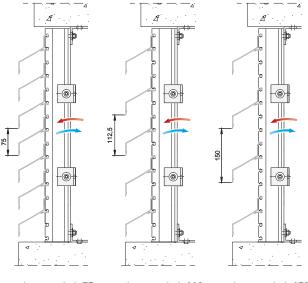
VENTILATION VALUES

VENTILATION VALUES							
Property		75		112		150	
		STND	+0PT	STND	+0PT	STND	+0PT
Visual free area		53 %	53 %	69 %	69 %	76 %	76 %
Physical free are	ea	37 %	37 %	46 %	46 %	44 %	44 %
Ce (higher is better)		0,174	0,169	0,198	0,193	0,267	0,257
Cd (higher is better)		0,193	0,188	0,239	0,229	0,291	0,280
K-FACTOR	INTAKE	33,03	35,01	25,51	26,85	14,03	15,14
(lower is better)	EXHAUST	26,85	28,29	17,51	19,07	11,81	12,76

WATER RESISTANCE 🛟

	Class						
Air velo- city	75		112		150		
city	STND	+0PT	STND	+0PT	STND	+0PT	
0 m/s	Α	Α	В	Α	С	С	
0,5 m/s	В	Α	С	В	D	С	
1 m/s	В	В	С	В	D	С	
1,5 m/s	С	В	С	С	D	D	
2 m/s	D	D	D	D	D	D	
2,5 m/s	D	D	D	D	D	D	

STND and +OPT version: see page 5


 [→] Overview of mullions: see page 43
 → Full specifications: see page 44

Louvre pitch 150

DucoWall **Screening 70**

DucoWall Screening 70 is a louvre wall system with a very **high span** and **high airflow**. The louvre blades are fastened directly onto the mullion (Direct Clip). In combination with the limited number of supports, this ensures a **very fast installation** of the louvre wall. DucoWall Screening 70 is available with different louvre pitches (75 / 112 / 150 mm).

Louvre pitch 75

Louvre pitch 112

Louvre pitch 150

DIMENSIONS AND MULLIONS

Type of mullion	40/21 (Double)	40/70 Double	40/100 Double			
Louvre pitch	75 m	75 mm - 112 mm - 150 mm				
Louvre depth		82 mm				
Installation depth	94,5 mm	94,5 mm 145 mm 175 mn				
Maximum span between 2 mullions	←	2400 mm	\rightarrow			

VENTILATION VALUES

VENTILATION VALUES								
Property		7	75		112		150	
		STND	+0PT	STND	+0PT	STND	+OPT	
Visual free area		53 %	53 %	68 %	68 %	77 %	77 %	
Physical free are	ea	37 %	37 %	59 %	59 %	55 %	55 %	
Ce (higher is better)		0,182	0,181	0,212	0,212	0,270	0,264	
Cd (higher is better)		0,200	0,197	0,270	0,266	0,313	0,308	
K-FACTOR	INTAKE	30,19	30,52	22,25	22,25	13,72	14,35	
(lower is better)	EXHAUST	25,00	25,77	13,72	14,13	10,21	10,54	

WATER RESISTANCE

	Class						
Air velo- city	75		112		150		
city	STND	ND +0PT STND +0PT		STND	+0PT		
0 m/s	В	Α	В	В	С	С	
0,5 m/s	С	В	С	В	D	С	
1 m/s	С	С	С	С	D	D	
1,5 m/s	С	С	С	С	D	D	
2 m/s	D	D	D	С	D	D	
2,5 m/s	D	D	D	D	D	D	

STND and +OPT version: see page 5

 [→] Overview of mullions: see page 43
 → Full specifications: see page 44

DucoWall Classic W 20Z

DucoWall Classic W 20Z is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The "Z"-shaped louvre blade produces a sleek design.

DIMENSIONS AND MULLIONS

Type of mullion	50/12	21/50 Multi	50/50	50/125		
Louvre pitch		35 mm				
Louvre depth		23 mm				
Installation depth	35 mm	73 mm	73 mm	148 mm		
Maximum span between 2 mullions		← 1200 mm →				

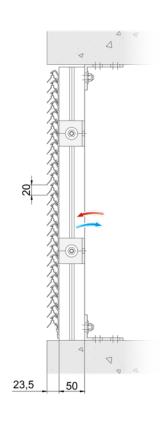
VENTILATION VALUES

Property		STND	+0PT
Visual free area		63 %	63 %
Physical free area	47 %	47 %	
Ce (higher is better)		0,210	0,203
Cd (higher is better)		0,181	0,174
K-FACTOR	INTAKE	22,68	24,27
(lower is better)	EXHAUST	30,52	33,03

WATER RESISTANCE

WATER RESISTANCE				
Air velocity	Class			
All velocity	STND	+OPT		
0 m/s	С	В		
0,5 m/s	С	В		
1 m/s	D	С		
1,5 m/s	D	D		
2 m/s	D	D		
2,5 m/s	D	D		

STND and +OPT version: see page 5 Insection


Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

DucoWall Classic W 20V

DucoWall Classic W 20V is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The unique "V"-shaped louvre blade ensures better water resistance and makes the louvre wall 'penetration-proof' and difficult to see through from the outside.

DIMENSIONS AND MULLIONS

Type of mullion	50/12	21/50 Multi	50/50	50/125		
Louvre pitch		20 mm				
Louvre depth		23 mm				
Installation depth	35 mm	73 mm	73 mm	148 mm		
Maximum span between 2 mullions		← 1850	mm →			

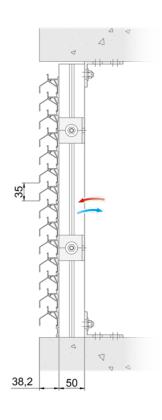
VENTILATION VALUES

Property		STND	+OPT
Visual free area		95 %	95 %
Physical free area		37 %	37 %
Ce (higher is better)		0,155	0,149
Cd (higher is better)		0,155	0,149
K-FACTOR	INTAKE	41,62	45,04
(lower is better)	EXHAUST	41,62	45,04

WATER RESISTANCE 😽

Air velocity	Class			
All velocity	STND	+OPT		
0 m/s	Α	Α		
0,5 m/s	В	Α		
1 m/s	С	В		
1,5 m/s	D	В		
2 m/s	D	С		
2,5 m/s	D	D		

STND and +OPT version: see page 5



Good water resistant

Penetration safe

DucoWall Classic W 35V

DucoWall Classic W 35V is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The unique "V"-shaped louvre blade ensures better water resistance and makes the louvre wall 'penetration-proof' and difficult to see through from the outside.

DIMENSIONS AND MULLIONS

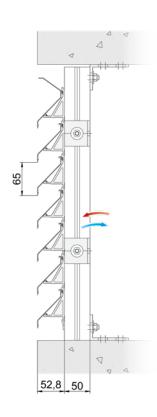
Type of mullion	50/12	21/50 Multi	50/50	50/125	
Louvre pitch		35 mm			
Louvre depth		38 mm			
Installation depth	50 mm	88 mm	88 mm	163 mm	
Maximum span between 2 mullions	←	2650	mm	\rightarrow	

VENTILATION VALUES

Property		STND	+OPT
Visual free area		59 %	59 %
Physical free area		35 %	35 %
Ce (higher is better)		0,118	0,116
Cd (higher is better)		0,124	0,123
K-FACTOR	INTAKE	71,82	74,32
(lower is better)	EXHAUST	65,04	66,10

WATER RESISTANCE 🐪

Africa de atro	Cla	ass
Air velocity	STND	+0PT
0 m/s	Α	Α
0,5 m/s	Α	Α
1 m/s	Α	Α
1,5 m/s	Α	Α
2 m/s	С	В
2,5 m/s	С	С


STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

DucoWall Classic W 50Z

DucoWall Classic W 50Z is a louvre wall system that can be placed against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The "Z"-shaped louvre blade produces a sleek design.

DIMENSIONS AND MULLIONS

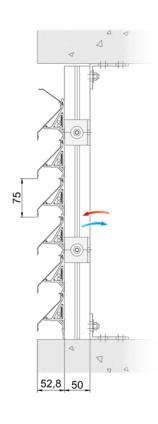
Type of mullion	50/12	21/50 Multi	50/50	50/125
Louvre pitch		65 mm		
Louvre depth		53 mm		
Installation depth	65 mm	103 mm	103 mm	178 mm
Maximum span between 2 mullions		← 1550 mm →		

VENTILATION VALUES

Property		STND	+OPT	
Visual free area		75 %	75 %	
Physical free area		52 %	52 %	
Ce (higher is better)		0,205	0,207	
Cd (higher is better)		0,278	0,266	
K-FACTOR	INTAKE	23,80	23,34	
(lower is better)	EXHAUST	12,94	14,13	

WATER RESISTANCE

Air velocity	Class		
All velocity	STND	+OPT	
0 m/s	В	Α	
0,5 m/s	С	В	
1 m/s	С	В	
1,5 m/s	С	С	
2 m/s	D	С	
2,5 m/s	D	D	


STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

DucoWall Classic W 50/75Z

DucoWall Classic W 50/75Z is a louvre wall system that can be fitted against a support structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The "Z"-shaped louvre blade produces a sleek design.

DIMENSIONS AND MULLIONS

Type of mullion	50/12	21/50 Multi	50/50	50/125	
Louvre pitch		75 mm			
Louvre depth		53 mm			
Installation depth	65 mm	103 mm	103 mm	178 mm	
Maximum span between 2 mullions		← 1550 mm →			

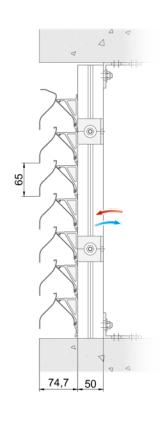
VENTILATION VALUES

Property		STND	+OPT
Property		סאופ	TUFI
Visual free area		80 %	80 %
Physical free area		54 %	54 %
Ce (higher is better)		0,219	0,219
Cd (higher is better)		0,297	0,288
K-FACTOR	INTAKE	20,85	20,85
(lower is better)	EXHAUST	11,34	12,06

WATER RESISTANCE 😯

Air velocity	Class		
All velocity	STND	+OPT	
0 m/s	В	Α	
0,5 m/s	С	В	
1 m/s	С	В	
1,5 m/s	D	С	
2 m/s	D	С	
2,5 m/s	D	D	

STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm



Good water resistant

Penetration safe

DucoWall Classic W 70V

DucoWall Classic W 70V is a louvre wall system that can be fitted against an existing structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The unique "V"-shaped louvre blade ensures better water resistance and makes the louvre wall 'penetration-proof' and difficult to see through from the outside.

DIMENSIONS AND MULLIONS

Type of mullion	50/12	21/50 Multi	50/50	50/125	
Louvre pitch		65 mm			
Louvre depth		75 mm			
Installation depth	87 mm	125 mm	125 mm	200 mm	
Maximum span between 2 mullions		← 2150) mm -	→	

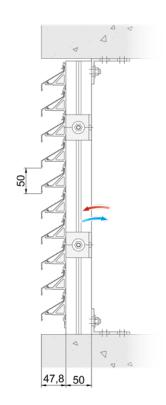
VENTILATION VALUES

Property		STND	+OPT
Visual free area		65 %	65 %
Physical free area		44 %	44 %
Ce (higher is better)		0,117	0,111
Cd (higher is better)		0,109	0,103
K-FACTOR	INTAKE	73,05	81,16
(lower is better)	EXHAUST	84,17	94,26

WATER RESISTANCE 😯

Air velocity	Cla	ass
	STND	+0PT
0 m/s	В	Α
0,5 m/s	В	В
1 m/s	В	В
1,5 m/s	С	С
2 m/s	D	D
2,5 m/s	D	D

STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm



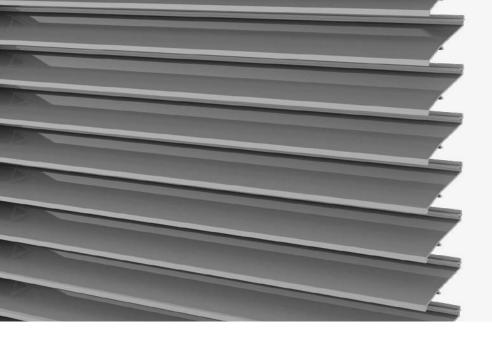
DucoWall Classic W 45HP

The DucoWall Classic W 45HP combines very good airflow with a 'Z'-shaped louvre blade for a sleek design. This makes the DucoWall Classic W 45HP suitable for purge ventilation in projects with specific aesthetic requirements.

DIMENSIONS AND MULLIONS

Type of mullion	50/12	21/50 Multi	50/50	50/125		
Louvre pitch		50 mm				
Louvre depth		48 mm				
Installation depth	60 mm	60 mm 98 mm 98 mm 173 m				
Maximum span between 2 mullions		← 1330 mm →				
Louvre blade holders		Plastic Metal Clip Reaction to fire A2-s1,d0 (EN13501-1)				

VENTILATION VALUES


Property	STND	+OPT	
Visual free area		70 %	70 %
Physical free area		60 %	60 %
Ce (higher is better)		0,295	0,295
Cd (higher is better)		0,385	0,369
K-FACTOR	INTAKE	11,49	11,49
(lower is better)	EXHAUST	6,75	7,34

WATER RESISTANCE

WATER RESISTANCE			
Air velocity	Class		
All velocity	STND	+OPT	
0 m/s	С	В	
0,5 m/s	С	В	
1 m/s	С	С	
1,5 m/s	С	С	
2 m/s	D	С	
2,5 m/s	D	С	

STND and +0PT version: see page 5 Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

DucoWall Classic W 50HP

The DucoWall Classic W 50HP has been specially developed for purge ventilation. The uniquely shaped 'High Performance' louvre blade with a low resistance factor ensures very good airflow. The DucoWall Classic W 50HP is a louvre wall system that can be fitted against an existing structure. Quick and easy assembly is possible because of the 'Turn-Click' system.

55,7 50

DIMENSIONS AND MULLIONS

Type of mullion	50/12	21/50 Multi	50/50	50/125		
Louvre pitch		50 mm				
Louvre depth		56 mm				
Installation depth	68 mm 106 mm 106 mm 181 m					
Maximum span between 2 mullions		← 1100 mm →				
Louvre blade holders		Plastic Metal Clip Reaction to fire A2-s1,d0 (EN13501-1)				

VENTILATION VALUES

Property		STND	+OPT
Visual free area		88 %	88 %
		,	
Physical free area		68 %	68 %
Ce (higher is better)		0,358	0,352
Cd (higher is better)		0,439	0,415
K-FACTOR	INTAKE	7,80	8,07
(lower is better)	EXHAUST	5,19	5,81

WATER RESISTANCE 😯

WATER RESISTANCE			
Air velocity	Cla	ass	
All velocity	STND	+0PT	
0 m/s	С	В	
0,5 m/s	С	В	
1 m/s	С	В	
1,5 m/s	D	С	
2 m/s	D	С	
2,5 m/s	D	С	

STND and +OPT version: see page 5 Insect p

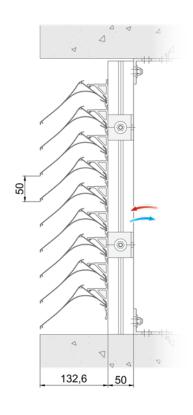
Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

High Performance

Excellent water

Fall-through protection

Impact protection



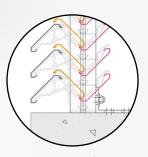
DucoWall Classic W 130HP

The DucoWall Classic W 130HP has been specially developed for purge ventilation. The uniquely shaped 'High Performance' louvre blade with a low resistance factor provides a combination of very good airflow (high flow rates) together with excellent water resistance (class A). DucoWall Classic W 130HP is a louvre wall system that can be fitted against an existing structure. Quick and easy assembly is possible because of the 'Turn-Click' system. The DucoWall Classic W 130HP meets class 5 of EN13049 for impact protection* and BS6180 standard (class XI) for fall-through protection*. See page 38-39 for all classes per country.

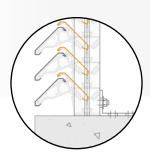
Type of mullion	50/12	21/50 Multi	50/50	50/125	
Louvre pitch	50 mm				
Louvre depth	133 mm				
Installation depth	145 mm 183 mm 183 mm 258 mm				
Maximum span between 2 mullions	← 2300 mm →				
Louvre blade holders	Plastic Metal Clip Reaction to fire A2-s1,d0 (EN13501-1)				

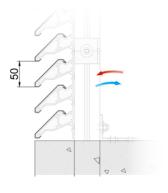
VENTILATION VALUES

Property	STND	+0PT	
Visual free area		88 %	n/a
Physical free area		70 %	n/a
Ce (higher is better)		0,327	n/a
Cd (higher is better)		0,295	n/a
K-FACTOR INTAKE		9,35	n/a
(lower is better)	EXHAUST	11,49	n/a


WATER RESISTANCE

WATER RESISTANCE				
Air velocity	Cla	ass		
All velocity	STND	+OPT		
0 m/s	A n/a			
0,5 m/s	Α	n/a		
1 m/s	Α	n/a		
1,5 m/s	Α	n/a		
2 m/s	Α	n/a		
2,5 m/s	С	n/a		


STND and +OPT version: see page 5 Insect protection: optional stainless steel mesh 2.3×2.3 mm or 6×6 mm * Impact and fall-through protection only applies in combination with Metal Clips.

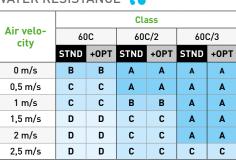

W 60C/3 triple row of louvre blades

W 60C/2 double row of louvre blades

DucoWall Classic W 60C

DucoWall Classic W 60C is a 'feature' louvre wall system, manufactured from 'cold-rolled' rather than extruded, aluminium louvre blades. The plastic louvre holders ensure a unique sturdiness. The three versions (single, double or triple) combine maximum airflow with very high water resistance, even in extreme weather conditions.

W 60C single row of louvre blades


DIMENSIONS AND MULLIONS

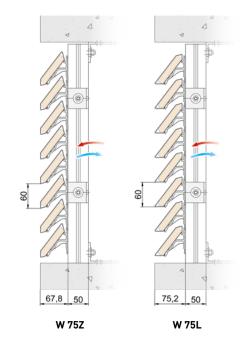
Type of mullion		50/12	21/50 Multi	50/50	50/125
Louvre pitch		50 mm			
Louvre depth		77 mm			
	60C	89 mm	127 mm		
Installati- on depth	60C/2				202 mm
on depth	60C/3	×			
Maximum span between 2 mullio	ons	← 1250 mm →			

VENTILATION VALUES

Property		60	60C		60C/2		60C/3	
		STND	+0PT	STND	+OPT	STND	+0PT	
Visual free area		84 %	84 %	84 %	84 %	84 %	84 %	
Physical free are	ysical free area 46 % 46 %		36 %	36 %	36 %	36 %		
Ce (higher is better)		0,315	0,300	0,208	0,202	0,179	0,175	
Cd (higher is better)		0,305	0,291	0,196	0,191	0,153	0,151	
K-FACTOR	INTAKE	10,08	11,11	23,11	24,51	31,21	32,65	
(lower is better)	EXHAUST	10,75	11,81	26,03	27,41	42,72	43,86	

WATER RESISTANCE

STND and +OPT version: see page 5



DucoWall **Acoustic** W 75Z & 75L

The DucoWall Acoustic W 75Z and W 75L are **sound-absorbing** louvre wall systems, manufactured from extruded aluminium sections profiles that feature sound absorbing, non-combustible mineral wool. The louvre blade can be clicked onto the plastic louvre holders **in both the Z-shape and the L-shape** for different aesthetic finishes.

DIMENSIONS AND MULLIONS

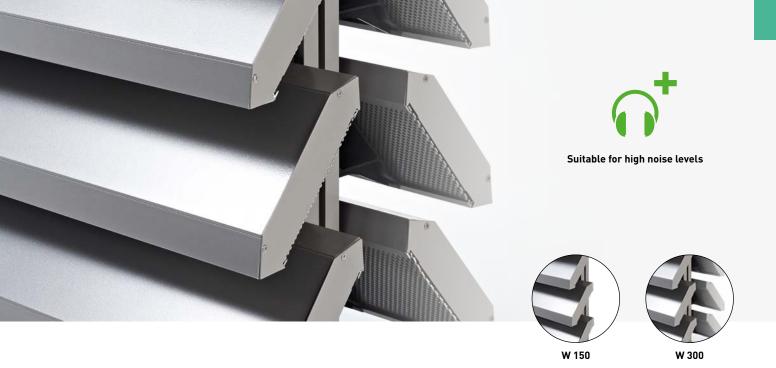
Type of mullion		50/12	21/50 Multi	50/50	50/125
Louvre pitch		60 mm			
Louvre depth		67 mm			
Installation	75Z	79 mm	117 mm	117 mm	192 mm
depth	75L	87 mm	125 mm	125 mm	200 mm
Maximum	75Z	← 170		mm	\rightarrow
span between 2 mullions	75L	←	1650	mm	\rightarrow

SOUND ABSORPTION

Attenuation value Rw (C;Ctr)				
W 75Z	W 75L			
6 (0;-1) dB	6 (0;-2) dB			

VENTILATION VALUES

VERTICATION VALUES							
December 1		7!	5Z	7!	5L		
Property		STND	+0PT	STND	+0PT		
Visual free area		76 %	76 %	95 %	95 %		
Physical free area		28 %	28 %	28 %	28 %		
Ce (higher is better)		0,196	0,196	0,212	0,209		
Cd (higher is better)		0,183	0,182	0,258	0,254		
K-FACTOR	INTAKE	26,03	26,03	22,25	22,89		
(lower is better)	EXHAUST	29,86	30,19	15,02	15,50		


WATER RESISTANCE

WATER RESISTANCE						
		Class				
Air velocity	75	5Z	75	īL		
	STND	+OPT	STND	+OPT		
0 m/s	В	В	В	В		
0,5 m/s	В	В	В	В		
1 m/s	С	С	С	С		
1,5 m/s	С	С	D	D		
2 m/s	D	D	D	D		
2,5 m/s	D	D	D	D		

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

DucoWall Acoustic W 150 & 300

The DucoWall Acoustic W 150 is a sound absorbing louvre wall system, manufactured from extruded aluminium sections featuring sound-absorbing, non-combustible mineral wool, suitable for **additional acoustic damping**. With the DucoWall Acoustic W 300, two 150 louvre blades are fitted next to each other for optimum sound absorption.

DIMENSIONS AND MULLIONS

Type of mullion		50/12	21/50 Multi	50/50	50/125
Louvre pitch			150	mm	
Louvre depth			142	mm	
Installation doub	150	154	192	192	267 mm
Installation depth 300		mm	mm	mm	х
Maximum span between 2 mullions		←	2150 mm		\rightarrow

W 150 (single row) W 300 (double row)

SOUND ABSORPTION

Attenuation value Rw (C;Ctr)					
W 150 W 300					
11 (-1;-2) dB	17 (-1;-3) dB				

VENTILATION VALUES

Property		1	50	300	
		STND	+0PT	STND	+0PT
Visual free area		74 %	74 %	74 %	74 %
Physical free area		35 %	35 %	35 %	35 %
Ce (higher is better)		0,301	0,295	0,272	0,250
Cd (higher is better)		0,302	0,296	0,272	0,250
K-FACTOR	INTAKE	11,04	11,49	13,52	16,00
(lower is better)	EXHAUST	10,96	11,41	13,52	16,00

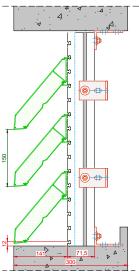

WATER RESISTANCE 🟅

WATER RESISTANCE						
		Class				
Air velocity	15	50	30	00		
	STND	+OPT	STND	+OPT		
0 m/s	В	В	Α	Α		
0,5 m/s	С	С	В	В		
1 m/s	С	С	В	В		
1,5 m/s	С	С	С	С		
2 m/s	D	D	С	С		
2,5 m/s	D	D	D	D		

STND and +OPT version: see page 5

Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm

Single Bank

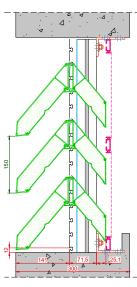

Double Ban

DucoWall **Screening Acoustic**

DucoWall Screening Acoustic is a sturdy **aluminium louvre wall system with acoustic damping**. There is a choice of two different louvre pitches: 112.5 or 150 mm.

The acoustic damping can be further improved by applying the Double Bank, where an additional blade is clicked on at the back. In this way, the louvre wall can be adapted to the wishes and needs of any project.

Installation is quick, as the blades are placed directly on the mullion.


Single Bank

SOUND ABSORPTION

Attenuation value Rw (C;Ctr)						
Single Bank 112 Double Bank 112 Single Bank 150 Double Bank 15						
14 (-1;-4) dB	17 (-1;-4) dB	11 (0;-2) dB	15 (-1;-3) dB			

DIMENSIONS AND MULLIONS

Type of mullion		40/21 (Double)	40/70 Double	40/100 Double		
Louvre pitch		112	2.5 mm or 150 r	nm		
Louvre depth	Single Bank	150 mm				
Louvi e deptii	Double Bank	238 mm				
In atallation doubt	Single Bank	162 mm	212 mm	242 mm		
Installation depth	Double Bank	238 mm	238 mm	242 mm		
Maximum span between 2 mullions		←	2425 mm	\rightarrow		

Double Bank

 [→] Overview of mullions: see page 43
 → Full specifications: see page 44

WATER RESISTANCE

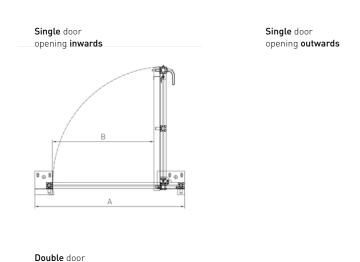
	Class							
Air velocity	Single E	Single Bank 112		Double Bank 112		Single Bank 150		3ank 150
	STND	+0PT	STND	+0PT	STND	+0PT	STND	+0PT
0 m/s	В	В	Α	Α	С	В	В	Α
0,5 m/s	С	В	В	Α	D	С	В	Α
1 m/s	С	С	С	Α	D	С	С	Α
1,5 m/s	D	С	С	В	D	D	С	В
2 m/s	D	D	D	С	D	D	D	С
2,5 m/s	D	D	D	D	D	D	D	D

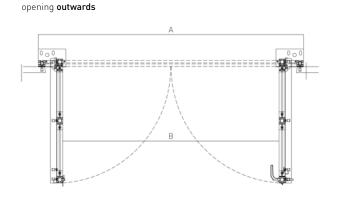
VENTILATION VALUES

Property		Single E	Single Bank 112		Double Bank 112		Single Bank 150		Double Bank 150	
Property		STND	+0PT	STND	+OPT	STND	+0PT	STND	+0PT	
Visual free area		66 %	66 %	66 %	66 %	74 %	74 %	74 %	74 %	
Physical free area		25 %	25 %	25 %	25 %	35 %	35 %	35 %	35 %	
Ce (higher is better)		0,254	0,226	0,197	0,182	0,295	0,252	0,211	0,200	
Cd (higher is better)		0,253	0,231	0,196	0,175	0,290	0,251	0,193	0,175	
K-FACTOR	INTAKE	15,50	19,58	25,77	30,19	11,49	15,75	22,46	25,00	
(lower is better)	EXHAUST	15,62	18,74	26,03	32,65	11,89	15,87	26,85	32,65	

 $\textbf{STND and +OPT version: see page 5} \qquad \text{Insect protection: optional stainless steel mesh 2.3 x 2.3 mm or 6 x 6 mm}$

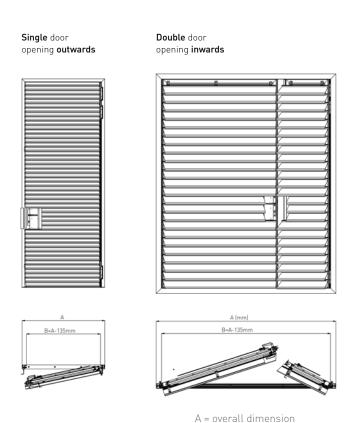
DUCO LOUVRE DOORS


The louvre door range enables you to choose between the **DucoDoor Wall**, **DucoDoor Louvre** and **DucoDoor Grille** depending on the aesthetic, technical and legal requirements of the building. DUCO's louvre doors are suitable for use in (technical) rooms – whether or not at ground level, in car parks, etc. either **ventilating** or as (draught-proof) **false louvre doors**. All of our doors will guarantee a **sleek and uniform look**.


Туре							
	DucoDoor Wall see p. 31	DucoDoor Louvre see p. 32	DucoDoor Grille see p. 33				
Application	Louvre door in louvre wall system without specific requirements.	Ventilated louvre door or false louvre door in the louvre wall system with specific requirements for burglary resistance and/or draught-proofing.	Free-standing ventilated louvre door or false louvre door either with or without specific requirements for burglary resistance and/or draught-proofing.				
Vandal-proof	Subject to Solid 30Z louvre blades	Subject to Solid 30Z louvre blades	✓				
Burglar resistant	×	RC2 possible with NP or P1 internal louvre blades	RC2 possible with NP or P1 blades				
Draught-proof	×	Possible subject to NP louvre blades	Possible subject to NP louvre blades				
Louvre blades	Complete DucoWall range possible	Complete DucoWall range available as surface-mounted blades, combined with Solid 30Z internal blades as an option	Solid 30Z NP, P1 or P2 louvre blades				
Opening angle	90°	<u>√180°</u>	<u>√180°</u>				
Available versions	Single/double door opening inwards/outwards left/right-hand opening available						
Maximum usable dimensions	Single door: W 1500 x H 3000 mm Double door: W 3000 x H 3000 mm						
Door furniture	combinations available on request. Pa	he inside of the door and a T-handle on anic lock available on doors that act as a outward opening and not on intrusion-	an emergency exit (only for doors less				

The DucoDoor Wall is a **pivot door** that can be easily constructed using the same louvre blades and sections as your chosen louvre wall.

Thanks to a wide range of Solid, Classic and Screening louvre blades, the DucoDoor Wall integrates seamlessly and **invisibly into a full louvre wall**. This guarantees a sleek and **uniform façade**.



A = overall dimension B = useful width

With the DucoDoor Louvre, DUCO has developed an **intrusion-resistant louvre door** that has been extensively tested by SKG in accordance with European standards (EN 1627:2011 & NEN 5096+C2:2011) and has been certified as **resistance class RC2**. The DucoDoor Louvre can also be made **draughtproof**. The special hinges fitted on the side create a **large usable width** and enable the door to be opened **by 180°**. This type of louvre door can be easily concealed in a louvre wall as it can draw on the **complete range** of Solid, Classic and Screening louvre blades.

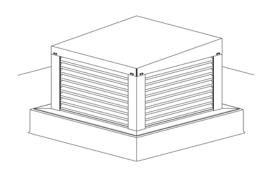
B = useful width

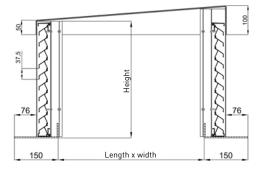
As a **free-standing entrance door**, the DucoDoor Grille is eminently suitable for non-louvre walls. Thanks to the fact that the **Solid blades built in as standard** (type 30Z) can be slotted in three different ways, (P1, P2 or NP), the façade can be given an aesthetic and expressive character. The DucoDoor Grille also scores high on **burglary resistance**. The Solid blades make every version **vandal-proof**. What is more, this louvre door has been tested by SKG in accordance with European standards (EN 1627:2011 & NEN 5096+C2:2011) and an **RC2-certified version** is available. In addition, the DucoDoor Grille can be made completely **draught-proof**. The special hinges fitted on the side create a **large usable width** and enable the door to be opened **by 180°**.

B = useful width

Double door

DucoDoor Grille uses Solid 30Z louvre blades. All specifications relating to ventilation capacity, water-resistance and insect-resistance can be found on page 8.




Duco Roof Turret Solid 30Z

Duco Roof Turret Solid 30Z is an aluminium roof turret. It provides aesthetic concealment of air vents. The roof turret also ensures adequate **purge ventilation** of the screened areas and can be used in almost **any project**. The perforated Solid 30Z louvre blades are the ideal solution for both insect resistance and ventilation capacity. Thanks to large punching (P2), this **small roof turret** achieves **high ventilation values**. The roof cowls are **made to measure** and provided with a sill at the bottom and a cover plate on top.

DIMENSIONS

Louvre pitch	37,5 mm		
Roof turret length	Min. 200 mm - Max. 2630 mm (to be coupled)		
Roof turret width	Min. 200 mm - Max. 1180 mm (to be coupled)		
Roof turret height	Min. 255 mm - max. 1600 mm		

VENTILATION VALUES

Property		P1	P2	P2 + ECG
		STND	STND	STND
Visual free area		60 %	86 %	86 %
Physical free area		34 %	48 %	48 %
Ce (higher is better)		0,243	0,258	0,179
Cd (higher is better)		0,234	0,253	0,202
K-FACTOR [lower is better]	INTAKE	16,94	15,02	31,21
	EXHAUST	18,26	15,62	24,51

STND and +OPT version: see page 5

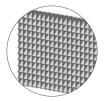
*ECG = Eggcrate grille (see page 37)

WATER RESISTANCE 😯

	Class				
Air velocity	P1	P2	P2 + ECG		
	STND	STND	STND		
0 m/s	В	С	Α		
0,5 m/s	С	С	Α		
1 m/s	С	С	Α		
1,5 m/s	D	D	В		
2 m/s	D	D	С		
2,5 m/s	D	D	С		

Sill profile

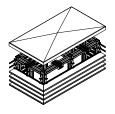
The **Duco Roof Turret Solid 30Z** also exists as a variant with sill profile. The sill profile ensures **better water drainage**. The sill profile allows the roof covering to be completely concealed. This provides an **aesthetic finish**. It also offers more placement options.



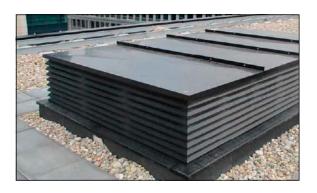
OPTIONS DUCO ROOF TURRET SOLID 30Z

DucoGrille Close 105

The DucoGrille Close 105 can, as an option, be integrated in the roof turret, thereby ensuring a controlled air supply or extraction. More info on the DucoGrille Close 105 can be found in our 'Louvre Grilles' brochure.



Eggcrate grille


The Duco Roof Turret Solid 30Z is available with an optional Eggcrate grille, which provides even better water resistance (combination with the P2 louvre blades).

ROOF COWLS WITH OTHER LOUVRE BLADES

In addition to the Duco Roof Turret Solid 30Z, DUCO also offers a system in which almost all types of louvre blade from the DucoWall range can be used. These roof cowls are made up of profiles from the DucoWall range. The upper panel and finishing thresholds are included. They are available as separate parts, semi-assembled kits or fully assembled kits. Do you need more info? Contact your DUCO dealer.

IMPACT AND FALL-THROUGH PROTECTION

Façade elements are increasingly expected to meet "impact protection" and "fall-through protection" requirements:

Impact protection

The resistance of a material to which an intense force or shock is exerted for a short period of time.

Fall-through protection

The load applied to resist penetration that prevents people from falling through this barrier.

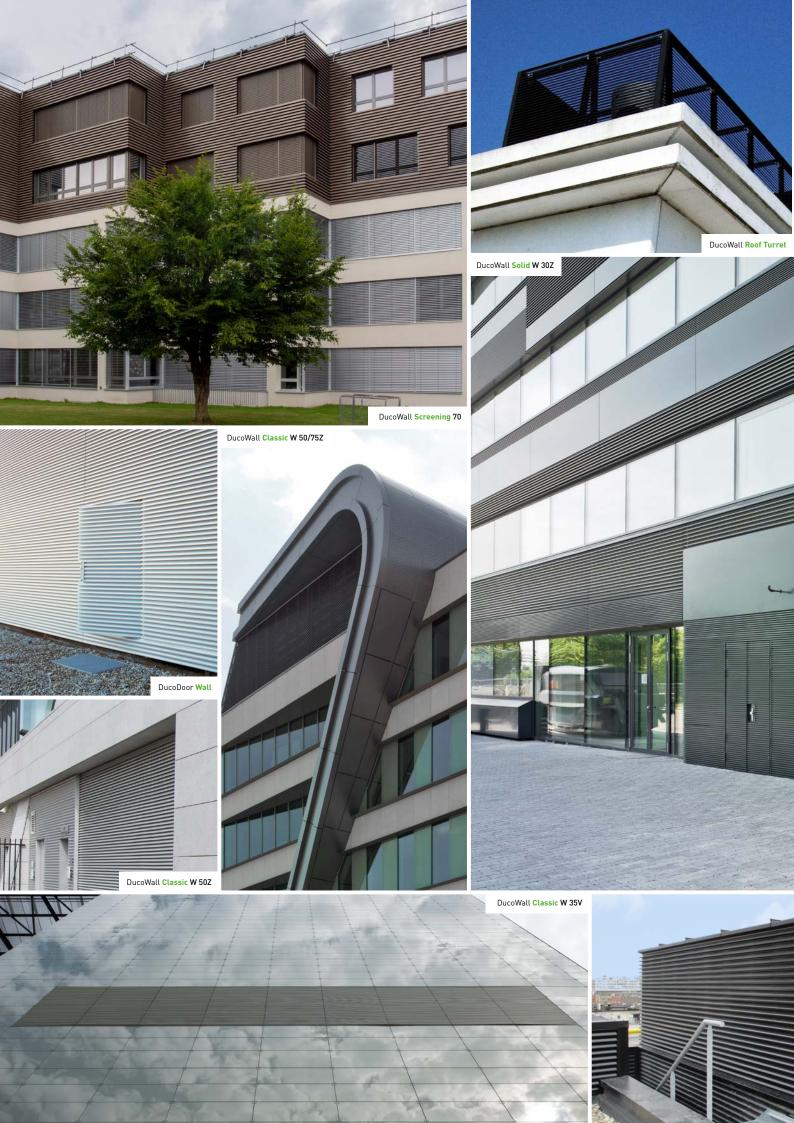
Note: often a specific mounting method applies or the test is only valid for specific versions (e.g. a certain step, a certain maximum span ...).

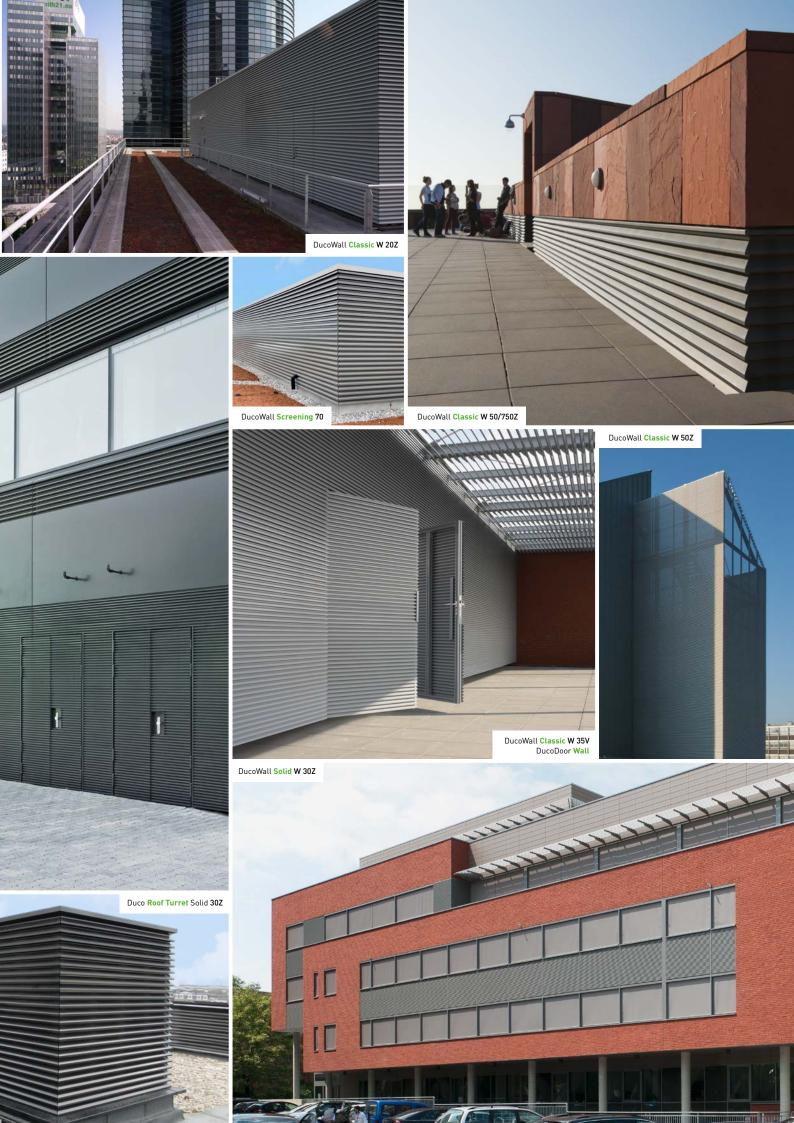
Contact DUCO for more information. Full test reports can be requested from DUCO.

Overview of results

DUCO products achieve very good results in terms of impact and fall-through protection:

	Impact p	rotection	F	all-throug	h protectio	n
	EN 13049	NF P08-302	B03-004	NEN EN1991-1-1	NF P01-013	BS6180
Maximum class	Class 5	H2	Class C5	Class C5	C1-C5/D	XI


DUCOWALL CLASSIC


DucoWall Classic W 130HP Metal Clip Class 5	-	C5a	A/B/F/G	-	XI
---	---	-----	---------	---	----

DUCOWALL SCREENING ACOUSTIC

DucoWall Screening Acoustic*	Class 5	C2	A/B/C4/D	A/B/F/G	-	ΧI

^{*} Impact and fall-through protection is only applicable with specific mounting requirements. Contact DUCO for more information.

SERVICE PLEASE!

To provide optimum support for your project, you will find professional sectional drawings, technical data sheets, specification texts and assembly instructions on our

website: www.duco.eu

Find out what else DUCO can do for you.

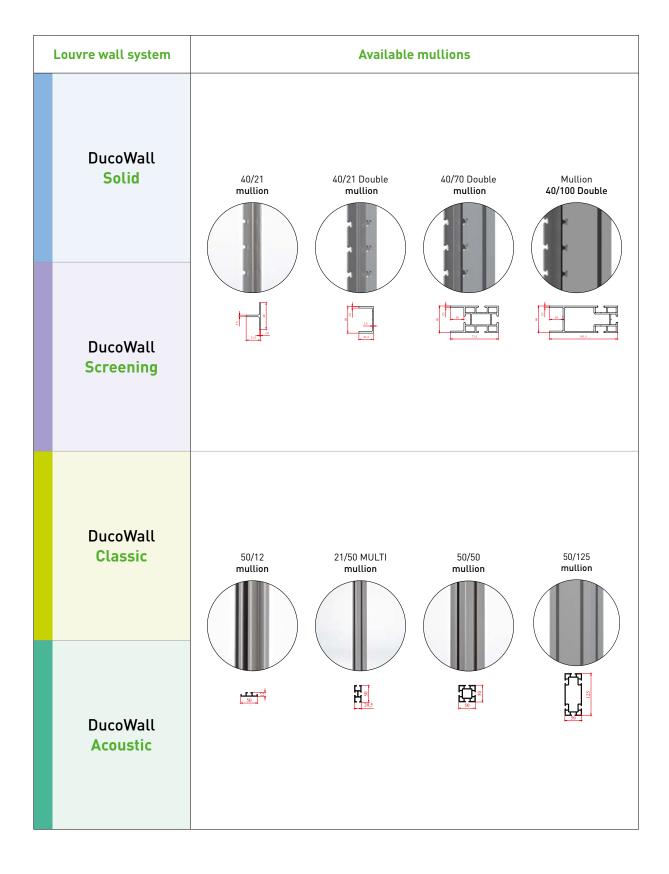
$\textbf{Calculating airflow} \rightarrow \underline{\text{airflowcalculation.duco.eu}}$

Calculate the required air flow rates, area or pressure differences for each type of louvre grille with this handy online tool.

BIM library → www.duco.eu/bim

All products in this library are freely available in Autodesk Revit.

Specification texts \rightarrow You will find specification texts for all products on our website www.duco.eu.



TAILORED ADVICE

DUCO offers tailored expertise & services for specifiers, and has a dedicated unit to advise and support architects, engineering offices and consultancies. DUCO works with reputable organisations such as the WTCB, the Von Karman Institute, etc. DUCO's knowledge and years of experience enable an appropriate solution to be offered for each of your projects.

Any questions? Please contact us at info@duco.eu or call +32 58 33 00 66 to for tailored advice!

OVERVIEW MULLIONS

TECHNICAL SPECIFICATION TABLE

TADLL			DUCOWALL SOLID						DUCOWALL SCREENING
			Solid 30Z see p. 8			Screening 35 see p. 11			Screening 55 see p. 12
→ Ventilation values			эее р. о			эσσ μ. 11			366 p. 12
Property	Unit	P1	P2	NP	75 pitch	112 pitch	150 pitch	75 pitch	112 pitch

Ptu	Unit	P1 P2		NP	75 p	75 pitch		112 pitch		150 pitch		75 pitch		112 pitch	
Property	Unit	STND	STND	+0PT	STND	STND	+0PT	STND	+0PT	STND	+0PT	STND	+0PT	STND	+OPT
Visual free area	%	60	86	86	0	52	52	68	68	76	76	53	53	69	69
Physical free area	%	34	48	48	0	29	29	27	27	35	35	37	37	46	46
K factor, intake (lower is better)		21,43	18,26	18,58	n/a	61,04	61,04	67,19	68,30	23,56	24,03	33,03	35,01	25,51	26,85
K factor, exhaust (lower is better)		17,08	13,62	14,13	n/a	38,10	38,58	33,03	32,65	19,93	20,29	26,85	29,29	17,51	19,07
Ce (higher is better)		0,216	0,234	0,232	n/a	0,128	0,128	0,122	0,121	0,206	0,204	0,174	0,169	0,198	0,193
Cd (higher is better)		0,242	0,271	0,266	n/a	0,162	0,161	0,174	0,175	0,224	0,222	0,193	0,188	0,239	0,229

→ Water resistance

B	11.2	P1	Р		NP	75 p	itch	112	pitch	150	pitch	75 p	itch	112	pitch
Property	Unit	STND	STND	+OPT	STND	STND	+OPT	STND	+OPT	STND	+0PT	STND	+0PT	STND	+OPT
Water resistance for v = 0 m/s	class	В	В	В	n/a	Α	A	В	В	С	С	Α	Α	В	Α
Water resistance for v = 0.5 m/s	class	В	С	В	n/a	В	В	С	В	С	С	В	Α	С	В
Water resistance for v = 1.0 m/s	class	С	С	В	n/a	В	В	С	С	D	D	В	В	С	В
Water resistance for v = 1.5 m/s	class	С	С	В	n/a	D	D	D	D	D	D	С	В	С	С
Water resistance for v = 2.0 m/s	class	D	D	С	n/a	D	D	D	D	D	D	D	D	D	D
Water resistance for v = 2.5 m/s	class	D	D	D	n/a	D	D	D	D	D	D	D	D	D	D

→ Sound reduction

Solution		P1	P2	NP	75 pitch	112 pitch	150 pitch	75 pitch	112 pitch
Rw	dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
С		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
C _{tr}		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Octave band values at 125 Hz	dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
at 250 Hz	dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
at 500 Hz	dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
at 1000 Hz	dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
at 2000 Hz	dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
at 4000 Hz	dB	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

→ Mullions and dimensions

	Property		Unit	P1	P2	NP	75 pitch	112 pitch	150 pitch	75 pitch	112 pitch	
Louvre pitch			mm		37,5		75	112	150	75	112	
Louvre depth			mm		30		43	43	43	64	64	
		40/21 (Double)	mm		51		57	57	57	77	77	
	Solid Screening	40/70 Double	mm		102		107	107	107	127	127	
	Screening	40/100 Double	mm		132		137	137	137	157	157	
Recess depth at mullion		50/12	mm		х			×			х	
mattion	Classic	21/50 MULTI	mm		×			×		x		
	Acoustic	50/50	mm		x			×		x		
		50/125	mm		x			×			x	
Maximum span be	tween 2 mulli	ons	mm		1970			1650		2050	2050	

STND and +OPT version: see page 5

												DUCO	\A/A										
													SSIC										
												O LA	0010										
				Scree					ssic		ssic	I	ssic	Clas		Clas							
				7	0			20)Z	20	V	35	5V	50)Z	50/	75Z						
				see	o. 13			see	p. 14	see	р. 15	see	р. 16	see	o. 17	see p	o. 18						
150	pitch	75 p			pitch	150	pitch																
STND	+OPT	STND	+OPT	STND	+OPT	STND	+0PT	STND	+OPT														
76	76	53	53	68	68	77	77	63	63	95	95	59	59	75	75	80	80						
44	44	37	37	59	59	55	55	47	47	37	37	35	35	52	52	54	54						
14,03 11,81	15,14 12,76	30,19 25,00	30,52 25,77	22,25 13,72	22,25 14,13	13,72 10,21	14,35 10,54	22,68 30,52	24,27 33,03	41,62 41,62	45,04 45,04	71,82 65,04	74,32 66,10	23,80 12,94	23,34 14,13	20,85 11,34	20,85 12,06						
0,267	0,257	0,182	0,181	0,212	0,212	0,270	0,264	0,210	0,203	0,155	0,149	0,118	0,116	0,205	0,207	0,219	0,219						
0,291	0,280	0,200	0,197	0,270	0,266	0,313	0,308	0,181	0,174	0,155	0,149	0,124	0,123	0,278	0,266	0,297	0,288						
450				110		450																	
150		75 p			pitch	150 pitch STND +0PT																	
STND	+OPT	STND	+OPT	STND	+OPT	STND	+OPT	STND	+OPT	STND	+OPT	STND	+OPT	STND	+OPT	STND	+0PT						
С	С	В	A	В	В	С	С	С	В	Α	A	A	Α	В	Α	В	Α						
D	C	С	В	С	В	D	С	С	В	В	A	A	A	С	В	С	В						
D D	C D	C	C C	C	C C	D D	D D	D D	C D	C D	B B	A	A	C	B C	C D	B C						
D	D	D	D	D	С	D	D	D	D	D	С	c	В	D	С	D	С						
D	D	D	D	D	D	D	D	D	D	D	D	С	С	D	D	D	D						
150	nitch	75 p	itab	112	pitch	150	nitoh																
		75 p			/a		150 pitch n/a		/-		/-	n,	/-	n/	/-	-/-							
n, n,		n/			a /a	n/		n, n,	/a /a	n, n,			/a /a	n/		n/							
n,		n/		n,		n/		n,			/a		/a	n/		n/							
n,		n/		n,		n/		n,			/a		/a	n/		n/							
n,	/a	n/	/a	n,	/a	n/	/a	n,	/a	n,	/a	n,	/a	n/	'a	n/	a						
n,		n/		n,		n/			/a	n,		n/a				n/a n/a				n/		n/	
n, n,		n/			/a /a	n/			/a /a	n, n,			/a /a	n/		n/							
n,		n/			a /a	n/			/a /a	n,			/a /a	n/		n/							
		.,,		117		117		1,,				11,				.,,							
	pitch	75 p			pitch		pitch																
	50	7:		8		15	50 2	3	3		0	3		5		75							
-	7	94		94			,5		ζ		3		8		ζ	50							
	<u>'</u> 27	14		14		14			ζ		ζ		C		ς	3							
	57	17		17		17		1	ζ		ζ		C	3		3							
					ς	l.			5		5		0	6		65							
					ζ			7	3	7	3	8	8	10)3	10	13						
				5	C			7	3	7	3	8	8	10)3	10	13						
				3	C			14	48	14	48	16	53	17	78	17	'8						
20	50	241	00	24	00	24	00	12	00	18	50	26	50	15	50	155	50						

TECHNICAL SPECIFICATION TABLE

TABLE	-															
17 (DEE	-								DUC0 CLA							
				70	ssic D V p. 19	45	ssic	Cla 50	ssic HP	Classic 130HP see p. 22			Clas 60 see	C		
→ Ventila	ation va	alues											1		l	
	Property		Unit									oc .	600			C/3
				STND	+0PT	STND	+0PT	STND	+OPT	STND	STND	+0PT	STND	+OPT	STND	+0PT
Visual free area			%	65	65	70	70	88	88	88	84	84	84	84	84	84
Physical free area			%	44 72.05	44	60	60	68	68	70	46	46	36	36	36	36
K factor, intake (le				73,05 84,17	81,16 94,26	11,49 6,75	11,49 7,34	7,80 5,19	8,07 5,81	9,35 11,49	10,08 10,75	11,11 11,81	23,11	24,51 27,41	31,21 42,72	32,65 43,86
Ce (higher is better)				0,117	0,111	0,295	0,295	0,358	0,352	0,327	0,315	0,3	0,208	0,202	0,179	0,175
Cd (higher is better)				0,109	0,103	0,385	0,369	0,439	0,415	0,295	0,305	0,291	0,196	0,191	0,153	0,151
→ Water	resista	ince	Unit								60	DC .	600	C/2	60	C/3
	Froperty		Offic	STND	+0PT	STND	+0PT	STND	+OPT	STND	STND	+0PT	STND	+OPT	STND	+0PT
Water resistance	for v = 0 m/s		class	В	Α	С	В	С	В	A	В	В	Α	Α	Α	Α
Water resistance	for v = 0.5 m/s	1	class	В	В	С	В	С	В	Α	С	С	A	A	Α	Α
Water resistance	for v = 1.0 m/s		class	В	В	С	С	С	В	A	С	С	В	В	Α	A
Water resistance	for v = 1.5 m/s	i	class	С	С	С	С	D	С	A	D	D	С	С	Α	A
Water resistance			class	D D	D D	D D	C	D D	C C	A C	D D	D D	C C	C C	A C	A C
→ Sound	l reduct															
		tion														
		tion									60	DC	600	C/2	60	C/3
Rw			dB	n,	/a	n,	/a	n,	/a	n/a		0C /a	600			C/3
Rw C			dB	n, n,		n,			/a /a	n/a n/a	n,			'a	n,	
C C _{tr}	Sol	ution		n,	/a /a	n,	/a /a	n,	/a /a	n/a n/a	n, n,	/a /a /a	n/ n/ n/	/a /a /a	n, n, n,	/a /a /a
С	Sol	ution at 125 Hz	dB	n, n,	/a /a /a	n, n,	/a /a /a	n n n	/a /a /a	n/a n/a n/a	n, n, n,	/a /a /a /a	n, n, n,	/a /a /a /a	n, n, n,	/a /a /a /a
C C _{tr}	Sol	at 125 Hz at 250 Hz	dB dB	n, n, n,	/a /a /a /a	n, n, n,	/a /a /a /a	n, n, n,	/a /a /a /a	n/a n/a n/a n/a	n, n, n, n,	/a /a /a /a /a	n, n, n, n,	'a 'a 'a 'a 'a	n, n, n, n,	/a /a /a /a /a
C C _{tr}	Sol	at 125 Hz at 250 Hz at 500 Hz	dB dB dB	n, n, n, n,	/a /a /a /a /a	n, n, n, n,	/a /a /a /a /a	n, n, n, n,	/a /a /a /a /a	n/a n/a n/a n/a n/a	n, n	/a /a /a /a /a /a	n, n, n, n, n,	'a 'a 'a 'a 'a 'a	n, n, n, n,	/a /a /a /a /a
C C _{tr}	Sol	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz	dB dB dB	n, n, n, n, n,	/a /a /a /a /a	n, n, n, n, n,	/a /a /a /a /a	n, n, n, n,	/a /a /a /a /a /a	n/a n/a n/a n/a n/a	n, n	/a /a /a /a /a /a	n, n, n, n, n, n,	/a /a /a /a /a /a	n, n, n, n, n, n, n, n, n,	/a /a /a /a /a /a
C C _{tr}	Sol	at 125 Hz at 250 Hz at 500 Hz	dB dB dB	n, n, n, n,	/a /a /a /a /a /a	n, n	/a /a /a /a /a	n n n n	/a /a /a /a /a	n/a n/a n/a n/a n/a	n, n	/a /a /a /a /a /a	n, n, n, n, n, n,	/a /a /a /a /a /a	n, n	/a /a /a /a /a
C C _{tr} Octave band value	es ons and	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz	dB dB dB dB dB	n, n	/a /a /a /a /a /a	n, n	/a /a /a /a /a /a	n n n n	/a /a /a /a /a /a	n/a n/a n/a n/a n/a n/a	n, n	/a //a //a //a //a //a //a //a	10,1 10,1 10,1 10,1 10,1 10,1 10,1	/a /a /a /a /a /a /a /a /a		/a /a /a /a /a /a /a /a
C C₁r Octave band value → Mullio	es	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz	dB dB dB dB dB	n, n	/a /a /a /a /a /a	n, n, n, n, n, n, n, n, n,	/a /a /a /a /a /a	n n n n n	/a /a /a /a /a /a /a	n/a n/a n/a n/a n/a n/a n/a	n. n	/a //a //a //a //a //a //a //a //a //a	n) n) n) n) n) n) n)	/a //a //a //a //a //a //a	n, n	/a //a //a //a //a //a //a
C Ctr Octave band value	es ons and	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz	dB dB dB dB dB	n, d, n, d,	/a /a /a /a /a /a /a	n, n, n, n, n, n, n, n,	/a //a //a //a //a //a //a //a //a //a	n n n n n n n n n n n n n n n n n n n	/a //a //a //a //a //a //a //a //a //a	n/a	n. n	/a //a //a //a //a //a //a //a //a //a	100 PM	//a //a //a //a //a //a //a //a	n, n	/a //a //a //a //a //a //a //a
C C₁r Octave band value → Mullio	es ons and	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz	dB dB dB dB dB The dB dB dB dB dB dB dB	n, n	/a //a //a //a //a //a //a //a //a //a	n, n, n, n, n, n, n, n, s,	/a //a //a //a //a //a //a //a //a //a	n n n n n n n n n n n n n n n n n n n	/a //a //a //a //a //a //a //a //a //a	n/a	n. n	/a //a //a //a //a //a //a //a //a //a	100 miles (100 miles (/a //a //a //a //a //a //a //a //a //a	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	/a //a //a //a //a //a //a //a //a //a
C Ctr Octave band value	es ons and	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz	dB dB dB dB dB The state of the	n, n	/a /a /a /a /a /a /a 55	n, n, n, n, n, n, n, s,	/a //a //a //a //a //a //a //a //a 0 8	n n n n n n n n n n n n n n n n n n n	/a //a //a //a //a //a //a //a //a //a	n/a	n. n	/a //a //a //a //a //a //a //a //a //a	0,000 0,0000	/a //a //a //a //a //a //a //a //a //a	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	/a //a //a //a //a //a //a //a //a //a
C Ctr Octave band value	es ons and Property	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension:	dB dB dB dB dB dB mm mm mm mm	n, n	/a /	n, s,	/a //a //a //a //a //a //a //a //a //a	n n n n n n n n n n n n n n n n n n n	/a //a //a //a //a //a //a //a //a //a	n/a	n. n	/a //a //a //a //a //a //a //a //a //a	n) n	/a //a //a //a //a //a //a //a //a //a	n, n	/a //a //a //a //a //a //a //a //a //a
C C _{tr} Octave band value Mullio Louvre pitch Louvre depth	es Ons and Property Solid	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension:	dB dB dB dB dB dB mm mm mm mm mm	n, n	/a /s	n, s,	/a //a //a //a //a //a //a //a //a //a	n n n n n n n n n n n n n n n n n n n	/a //a //a //a //a //a //a //a //a //a	n/a	n. n	/a //a //a //a //a //a //a //a //a //a	n) n	/a //a //a //a //a //a //a //a //a //a	n, n	/a //a //a //a //a //a //a //a //a //a
C Ctr Octave band value	es Ons and Property Solid Screening	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension: 40/21 [Double] 40/70 Double 40/100 Double 50/12	dB dB dB dB dB dB mm mm mm mm mm mm	n, n	/a //a //a //a //a //a //a //a //a //a	n, n	/a //a //a //a //a //a //a //a //a //a	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	/a //a //a //a //a //a //a //a //a //a	n/a	0.000 n.000	/a //a //a //a //a //a //a //a //a //a	ny n	/a //a //a //a //a //a //a //a //a //a	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	/a //a //a //a //a //a //a //a //a //a
C Cr Octave band value Mullio Louvre pitch Louvre depth	ons and Property Solid Screening	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension: 40/21 (Double) 40/70 Double 40/100 Double 50/12 21/50 MULTI	dB dB dB dB dB dB mm mm mm mm mm mm mm mm	0, n,	/a //a //a //a //a //a //a //a //a //a	55 4 3 6 9	/a //a //a //a //a //a //a //a //a //a	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	/a //a //a //a //a //a //a //a //a //a	n/a	0.000 n.000	/a //a //a //a //a //a //a //a //a //a	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	/a //a //a //a //a //a //a //a //a //a	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	/a //a //a //a //a //a //a //a //a //a
C Cr Octave band value Mullio Louvre pitch Louvre depth	es Ons and Property Solid Screening	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension: 40/21 [Double] 40/70 Double 40/100 Double 50/12 21/50 MULTI 50/50	dB dB dB dB dB dB mm	0, n,	/a //a //a //a //a //a //a //a //a //a	55 4 3 6 9	/a //a //a //a //a //a //a //a //a //a	5 5 5 5 5 5 6 6 6 11 11 11	/a //a //a //a //a //a //a //a //a //a	n/a	61 5 7 7 3 8 8	/a //a //a //a //a //a //a //a //a //a	600 600 57	/a //a //a //a //a //a //a //a //a //a	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	/a //a //a //a //a //a //a //a //a //a
C Cr Octave band value Mullio Louvre pitch Louvre depth	Property Solid Screening Classic Acoustic	at 125 Hz at 250 Hz at 500 Hz at 1000 Hz at 2000 Hz at 4000 Hz dimension: 40/21 [Double] 40/70 Double 40/100 Double 50/12 21/50 MULTI 50/50 50/125	dB dB dB dB dB dB mm mm mm mm mm mm mm mm	0, n,	/a //a //a //a //a //a //a //a //a //a	55 4 3 3 66 9	/a //a //a //a //a //a //a //a //a //a	5 5 5 5 5 5 6 6 111 111 111	/a //a //a //a //a //a //a //a //a //a	n/a	661 55 77 34 48 11:	/a //a //a //a //a //a //a //a //a //a	600 5 7 7 3 3 3 3 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/a //a //a //a //a //a //a //a //a //a	600 55 77	/a //a //a //a //a //a //a //a //a //a

STND and +OPT version: see page 5

DUCOWALL ACOUSTIC Acoustic Acoustic Acoustic Acoustic **Screening Acoustic Screening Acoustic** 75Z 75L 300 300 Single Bank Double Bank see p. 25 see p. 26 see p. 26 see p. 24 see p. 24 see p. 25 STND STND STND STND +OPT STND +OPT STND +OPT STND +OPT +OPT +OPT STND +0PT +OPT 95 95 74 74 74 74 66 66 74 74 66 66 74 74 76 76 28 28 28 28 35 35 35 35 25 25 35 35 25 25 35 35 19,58 15,75 30,19 26.03 26.03 22.25 22,89 13,52 16.00 13.52 16,00 15.50 11,49 25,77 22.46 25.00 29,86 30,19 15,02 15,50 13,52 16,00 13,52 16,00 15,62 18,74 11,89 15,87 26,03 32,65 26,85 32,65 0,196 0,196 0,212 0,209 0,272 0,250 0,272 0,250 0,254 0,226 0,295 0,252 0,197 0,182 0,211 0,200 0,183 0,182 0,258 0,254 0,272 0,250 0,272 0,250 0,253 0,231 0,290 0,251 0,196 0,175 0,193 0,175 STND +OPT STND +OPT STND +OPT STND STND +OPT STND +OPT STND +OPT STND +OPT +0PT В В В В Α Α Α Α В В С В Α Α В Α В В В В В В В В С В D С В A В A С С С С С В В В В С С D С С Α С С D D С С С С D С D D С В С В D D D D С С С С D D D D D С D С D D D D D D D D D D D D D D D D 17 17 17 6 6 14 11 15 0 0 0 -1 -1 -1 -1 -2 -3 -3 -2 -3 - 1 -4 -4 2,7 7,8 7,8 5,5 5,1 6,0 2,6 6,7 3,5 3 8 8 4,7 4,3 5.1 4,6 2,1 1,9 14,9 14,9 7,1 6,2 10,9 9,0 4,8 4,4 17,8 17,8 14,9 12,5 21,8 18,5 10,1 9,7 17,7 17,7 21,2 14,0 34,1 23,7 12,4 11,5 22,4 22,4 17,3 11,9 27,2 20,2 150 pitch 150 pitch 60 60 150 150 112,5 150 112,5 67 75 150 150 150 150 238 238 238 142 142 238 х х х х 150 150 150 150 238 238 238 238 212 212 212 212 238 X X X × 238 238 238 242 \times 242 242 242 242 242 242 242 X x х 79 87 x x 117 125 334 334 117 125 334 334 192 200 1700 1650 2150 2150 2425 2425

